• Title/Summary/Keyword: Patterns of failure

Search Result 599, Processing Time 0.024 seconds

Maximum standardized uptake value at pre-treatment PET in estimating lung cancer progression after stereotactic body radiotherapy

  • Park, Jisun;Choi, Yunseon;Ahn, Ki Jung;Park, Sung Kwang;Cho, Heunglae;Lee, Ji Young
    • Radiation Oncology Journal
    • /
    • v.37 no.1
    • /
    • pp.30-36
    • /
    • 2019
  • Purpose: This study aimed to identify the feasibility of the maximum standardized uptake value (SUVmax) on baseline 18F-fluorodeoxyglucose positron emission tomography-computed tomography (FDG PET/CT) as a predictive factor for prognosis in early stage primary lung cancer treated with stereotactic body radiotherapy (SBRT). Materials and Methods: Twenty-seven T1-3N0M0 primary lung cancer patients treated with curative SBRT between 2010 and 2018 were retrospectively evaluated. Four patients (14.8%) treated with SBRT to address residual tumor after wedge resection and one patient (3.7%) with local recurrence after resection were included. The SUVmax at baseline PET/CT was assessed to determine its relationship with prognosis after SBRT. Patients were divided into two groups based on maximum SUVmax on pre-treatment FDG PET/CT, estimated by receiver operating characteristic curve. Results: The median follow-up period was 17.7 months (range, 2.3 to 60.0 months). The actuarial 2-year local control, progression-free survival (PFS), and overall survival were 80.4%, 66.0%, and 78.2%, respectively. With regard to failure patterns, 5 patients exhibited local failure (in-field failure, 18.5%), 1 (3.7%) experienced regional nodal relapse, and other 2 (7.4%) developed distant failure. SUVmax was significantly correlated with progression (p = 0.08, optimal cut-off point SUVmax > 5.1). PFS was significantly influenced by pretreatment SUVmax (SUVmax > 5.1 vs. SUVmax ≤ 5.1; p = 0.012) and T stage (T1 vs. T2-3; p = 0.012). Conclusion: SUVmax at pre-treatment FDG PET/CT demonstrated a predictive value for PFS after SBRT for lung cancer.

Numerical analysis on dynamic response and damage assessment of FRP bars reinforced-UHPC composite beams under impact loading

  • Tao Liu;Qi M. Zhu;Rong Ge;Lin Chen;Seongwon Hong
    • Computers and Concrete
    • /
    • v.34 no.4
    • /
    • pp.409-425
    • /
    • 2024
  • This paper utilizes LS-DYNA software to numerically investigate impact response and damage evaluation of fiber-reinforced polymer (FRP) bars-reinforced ultra-high-performance concrete (UHPC) composite beams (FRP-UHPC beams). Three-dimensional finite element (FE) models are established and calibrated by using literature-based static and impact tests, demonstrating high accuracy in simulating FRP-UHPC beams under impact loading. Parametric analyses explore the effects of impact mass, impactor height, FRP bar type and diameter, and clear span length on dynamic response and damage modes. Two failure modes emerge: tensile failure with bottom longitudinal reinforcement fracture and compression failure with local concrete compression near the impact region. Impact mass or height variation under the same impact energy significantly affects the first peak impact force, but minimally influences peak midspan displacement with a difference of no more than 5% and damage patterns. Increasing static flexural load-carrying capacity enhances FRP-UHPC beam impact resistance, reducing displacement deformation by up to 30%. Despite similar static load-carrying capacities, different FRP bars result in varied impact resistance. The paper proposes a damage assessment index based on impact energy, static load-carrying capacity, and clear span length, correlating well with beam end rotation. Their linearly-fitting coefficient was 1.285, 1.512, and 1.709 for the cases with CFRP, GFRP, and BFRP bars, respectively. This index establishes a foundation for an impact-resistant design method, including a simplified formula for peak midspan displacement assessment.

Study on the Characteristics of Infinite Slope Failures by Probabilistic Seepage Analysis (확률론적 침투해석을 통한 무한사면 파괴의 특성 연구)

  • Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.10
    • /
    • pp.5-18
    • /
    • 2014
  • Many regions around the world are vulnerable to rainfall-induced slope failures. A variety of methods have been proposed for revealing the mechanism of slope failure initiation. Current analysis methods, however, do not consider the effects of non-homogeneous soil profiles and variable hydraulic responses on rainfall-induced slope failures. In this study, probabilistic stability analyses were conducted for weathered residual soil slopes with different soil thickness overlying impermeable bedrock to study the rainfall-induced failure mechanisms depending on the soil thickness. A series of seepage and stability analyses of an infinite slope based on one-dimensional random fields were performed to consider the effects of uncertainty due to the spatial heterogeneity of hydraulic conductivity on the failure of unsaturated slopes due to rainfall infiltration. The results showed that a probabilistic framework can be used to efficiently consider various failure patterns caused by spatial variability of hydraulic conductivity in rainfall infiltration assessment for a infinite slope.

Test pattern Generation for the Functional Test of Logic Networks (논리회로 기능검사를 위한 입력신호 산출)

  • 조연완;홍원모
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.13 no.3
    • /
    • pp.1-6
    • /
    • 1976
  • In this paper, a method of test pattern generation for the functional failure in both combinational and sequentlal logic networks by using exterded Boole an difference is proposed. The proposed technique provides a systematic approach for the test pattern generation procedure by computing Boolean difference of the Boolean function that represents the Logic network for which the test patterns are to be generated. The computer experimental results show that the proposed method is suitable for both combinational and asynchronous sequential logic networks. Suitable models of clocked flip flops may make it possible for one to extend this method to synchronous sequential logic networks.

  • PDF

Source Mechanism Analysis and Simplified Modeling for Rockburst (록버스트 발생기구 분석과 단순화 모델링)

  • Choi, Byung-Hee;Oh, Se-Wook;Kim, Hyunwoo;Jung, Yong-Bok
    • Explosives and Blasting
    • /
    • v.39 no.3
    • /
    • pp.1-14
    • /
    • 2021
  • Rockburst is a sudden and violent failure of rock. During the failure process, excess energy is liberated as seismic energy, which in turn causes the surrounding rock mass to vibrate. The level of the ground vibration can reach a magnitude of over 4.5 in the Richter local scale. Thus, a rockburst can cause not only injury to persons, but also damage to both underground workings and surface structures. In this paper the source mechanism of rockburst is analyzed based mainly on the two reports of the Canadian Rockburst Research Program (CRRP). A simplified LS-DYNA modeling is also performed to identify the tensile failure patterns occurring in the remaining rock mass right after blasting in mine stope. The configuration of the simplified model will probably be useful in small-scale laboratory tests for investigating the source mechanism of rockburst.

AMI Network Failure Analysis based on Graph Database (그래프 데이터베이스 기반 AMI 네트워크 장애 분석)

  • Jeong, Woo-Cheol;Jun, Moon-Seog;Choi, Do-Hyeon
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.7
    • /
    • pp.41-48
    • /
    • 2020
  • Recently, the spreading business of AMI (Advanced Metering Infrastructure) remote metering systems in various regions of the country has been activated, and it provides various metering functions such as two-way communication and security plan functions for power demand management. Current AMI system is difficult to analyze based on the existing RDB(Relational Database) due to the increase in the size of new internal IoT devices and networks. This study proposes a new GDB(Graph Database) based failure analysis method that utilizes existing RDB data. It analyzes the correlation of new failure patterns through accumulated data such as internal thresholds and status values. As a result of GDB-based simulation, it was confirmed that RDB can predict to a new obstacle pattern that was difficult to analyze.

The shear bond strength and adhesive failure pattern in bracket bonding with different light-curing methods (브라켓 접착시 광중합방식에 따른 전단결합강도와 파절양상 비교)

  • Shin, Jai-Ho;Lim, Yong-Kyu;Lee, Dong-Yul
    • The korean journal of orthodontics
    • /
    • v.34 no.4 s.105
    • /
    • pp.333-342
    • /
    • 2004
  • The purpose of this study was to evaluate the clinical effectiveness of a plasma arc light and light emitting diode (LED), compared with shear bond strength and the failure pattern of brackets bonded with visible light in direct bonding. Brackets were bonded with Transbond XT to 60 human premolars embedded in the resin blocks according to different light-curing methods. Then, the shear bond strength of each group was measured using a universal testing machine (Instron) and the adhesive failure pattern after debonding was visually examined by light microscope. The results were as follows: 1. The shear bond strength showed no significant difference between the visible light and light emitting diode, but the plasma arc light exhibited a significantly lower shear bond strength compared with the visible light and light emitting diode. 2. In the visible light and light emitting diode, adhesive failure patterns were similar. Bond failure occurred more frequently at the enamel-adhesive interface. 3. The bonding failure of brackets bonded with plasma arc light occurred more frequently at the bracket-adhesive interface. The results of this study suggest that plasma arc light, light emitting diode and visible light are all clinically useful in the direct bonding of orthodontic brackets.

Postmortem mRNA Expression Patterns in Left Ventricular Myocardial Tissues and Their Implications for Forensic Diagnosis of Sudden Cardiac Death

  • Son, Gi Hoon;Park, Seong Hwan;Kim, Yunmi;Kim, Ji Yeon;Kim, Jin Wook;Chung, Sooyoung;Kim, Yu-Hoon;Kim, Hyun;Hwang, Juck-Joon;Seo, Joong-Seok
    • Molecules and Cells
    • /
    • v.37 no.3
    • /
    • pp.241-247
    • /
    • 2014
  • Sudden cardiac death (SCD), which is primarily caused by lethal heart disorders resulting in structural and arrhythmogenic abnormalities, is one of the prevalent modes of death in most developed countries. Myocardial ischemia, mainly due to coronary artery disease, is the most common type of heart disease leading to SCD. However, postmortem diagnosis of SCD is frequently complicated by obscure histological evidence. Here, we show that certain mRNA species, namely those encoding hemoglobin A1/2 and B (Hba1/2 and Hbb, respectively) as well as pyruvate dehydrogenase kinase 4 (Pdk4), exhibit distinct postmortem expression patterns in the left ventricular free wall of SCD subjects when compared with their expression patterns in the corresponding tissues from control subjects with non-cardiac causes of death. Hba1/2 and Hbb mRNA expression levels were higher in ischemic SCD cases with acute myocardial infarction or ischemic heart disease without recent infarction, and even in cardiac death subjects without apparent pathological signs of heart injuries, than control subjects. By contrast, Pdk4 mRNA was expressed at lower levels in SCD subjects. In conclusion, we found that altered myocardial Hba1/2, Hbb, and Pdk4 mRNA expression patterns can be employed as molecular signatures of fatal cardiac dysfunction to forensically implicate SCD as the primary cause of death.

Nonlinear finite element analysis of slender RC columns strengthened with FRP sheets using different patterns

  • El-Kholy, Ahmed M.;Osman, Ahmed O.;EL-Sayed, Alaa A.
    • Computers and Concrete
    • /
    • v.29 no.4
    • /
    • pp.219-235
    • /
    • 2022
  • Strengthening slender reinforced concrete (RC) columns is a challenge. They are susceptible to overall buckling that induces bending moment and axial compression. This study presents the precise three-dimensional finite element modeling of slender RC columns strengthened with fiber-reinforced polymer (FRP) composites sheets with various patterns under concentric or eccentric compression. The slenderness ratio λ (height/width ratio) of the studied columns ranged from 15 to 35. First, to determine the optimal modeling procedure, nine alternative nonlinear finite element models were presented to simulate the experimental behavior of seven FRP-strengthened slender RC columns under eccentric compression. The models simulated concrete behavior under compression and tension, FRP laminate sheets with different fiber orientations, crack propagation, FRP-concrete interface, and eccentric compression. Then, the validated modeling procedure was applied to simulate 58 FRP-strengthened slender RC columns under compression with minor eccentricity to represent the inevitable geometric imperfections. The simulated columns showed two cross sections (square and rectangular), variable λ values (15, 22, and 35), and four strengthening patterns for FRP sheet layers (hoop H, longitudinal L, partial longitudinal Lw, and longitudinal coupled with hoop LH). For λ=15-22, pattern L showed the highest strengthening effectiveness, pattern Lw showed brittle failure, steel reinforcement bars exhibited compressive yielding, ties exhibited tensile yielding, and concrete failed under compression. For λ>22, pattern Lw outperformed pattern L in terms of the strengthening effectiveness relative to equivalent weight of FRP layers, steel reinforcement bars exhibited crossover tensile strain, and concrete failed under tension. Patterns H and LH (compared with pattern L) showed minor strengthening effectiveness.

Adequacy Evaluation of Stability Analyses Considering Rainfall Infiltration on Railroad Cut-off Soil Slopes (철도연변 절취 토사사면에 대한 강우에 의한 침투를 고려한 사면안정해석법의 적용성 평가)

  • Lee Su-Hyung;Hwang Seon-Keun;Sagong Myung;Kim Hyun-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.6
    • /
    • pp.137-146
    • /
    • 2005
  • 299 railroad slopes were investigated and the failure characteristics and reinforcement patterns were analyzed. Stability analyses on the 14 cut-off soil slopes were carried out. Surficial failures were predicted by infinite slope analyses assuming the temporarily perched ground water table at soil surface during rainfall period. Limit equilibrium analyses were also carried out and the influences of rainfall infiltration on the slope stabilities were taken Into account by seepage analyses using finite element method and by assuming ground water tables to be located adjacent to soil surface. The adequacy of those analyses was evaluated by comparing the slope failure characteristics between analysis results and the past failure records. From the comparison results, it was deduced that the limit equilibrium analyses were not appropriate to estimate the shallow failure that occurred at most of the railroad cut-off soil slopes. For the better estimation of the surficial failure, not only the increase of pore-water pressure (reduction of matric suction), but also the influence of water flows over slope surface which erode soil mass, should be evaluated and considered.