• Title/Summary/Keyword: Patterned electrode

Search Result 138, Processing Time 0.053 seconds

Direct Printing and Patterning of Highly Uniform Graphene Nanosheets for Applications in Flexible Electronics

  • Gu, Ja-Hun;Lee, Tae-Yun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.39.2-39.2
    • /
    • 2011
  • With the steady increase in the demand for flexible devices, mainly in display panels, researchers have focused on finding a novel material that have excellent electrical properties even when it is bended or stretched, along with superior mechanical and thermal properties. Graphene, a single-layered two-dimensional carbon lattice, has recently attracted tremendous research interest in this respect. However, the limitations in the growing method of graphene, mainly chemical vapor deposition on transition metal catalysts, has posed severe problems in terms of device integration, due to the laborious transfer process that may damage and contaminate the graphene layer. In addition, to lower the overall cost, a fabrication technique that supports low temperature and low vacuum is required, which is the main reason why solution-based process for graphene layer deposition has become the hot issue. Nonetheless, a direct deposition method of large area, few-layered, and uniform graphene layers has not been reported yet, along with a convenient method of patterning them. Here, we report an evaporation-induced technique for directly depositing few layers of graphene nanosheets with excellent uniformity and thickness controllability on any substrate. The printed graphene nanosheets can be patterned into desired shapes and structures, which can be directly applicable as flexible and transparent electrode. To illustrate such potential, the transport properties and resistivity of the deposited graphene layers have been investigated according to their thickness. The induced internal flow of the graphene solution during tis evaporation allows uniform deposition with which its thickness, and thus resistivity can be tuned by controlling the composition ratio of the solute and solvent.

  • PDF

MDOF Ionic-Polymer-Metal-Composite Actuators with Selectively Grown Multiple Electrodes (선택적으로 성장 시킨 다중 전극판을 갖는 다자유 IPMC 작동기)

  • Jeon, Jin-Han;Oh, Il-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.294-298
    • /
    • 2008
  • The ionic polymer-metal composite actuators with selectively grown multiple electrodes were developed to mimic the swimming locomotion of a fish. The developed method is based on combining electroplating with the electroless chemical reduction using the patterned mask. The advantages of this fabrication method are that the initial compositing between the polymer and platinum particles can be assured by the chemical reduction method, and the thickness of each electrode can be controlled easily and rapidly by electroplating. By using the fabricated actuator with a multiple degree of freedom, the oscillatory wave of the flexible membrane actuator was generated and a twisting motion was also realized to verify the possibility of mimicking the fish-like locomotion. The frequency response function was analyzed to investigate the natural frequency and the damping factor by a mechanical shaker and direct electrical excitation through the swept-sine method. Present results show that this novel method can be a promising technique to easily pattern each of multiple electrodes and to implement the biomimetic motion of the polymer actuators with good mechanical bending performance.

  • PDF

High performance guest-host liquid crystal display mode using the charged particles (대전입자를 이용한 고성능 Guest-Host 액정 디스플레이 모드)

  • Mun, Byung-June;Youn, Sung-Ho;Lee, Gi-Dong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.7
    • /
    • pp.1512-1517
    • /
    • 2012
  • In this paper, we proposed the novel hybrid guest-host liquid crystal display using the negative charged black particles in order to improve the low contrast ratio. We designed patterned electrode in order to switch the charged particle to the opposite electrode and improved the electro-optical characteristics by optimize the mixture of guest materials. In Comparison with the Heilmeier Guest-Host mode, proposed hybrid guest-host structure showed 80% reduction of transmittance in dark state, and the performance was examined by comparing contrast ratio.

Mixing in a Microchannel by using Induced-charge Electro-osmosis (마이크로 채널 내 유도-전하 전기삼투에 의한 혼합)

  • Jeon, Young-Hun;Heo, Young-Gun;Jung, Won-Hyuk;Alapati, Suresh;Suh, Yong-Kweon
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.4
    • /
    • pp.13-18
    • /
    • 2010
  • This paper presents an experimental study on the performance of a micro-mixer using AC electro-osmotic flow. The microchannel is made of PDMS for the side and top walls and glass patterned with ITO for the bottom wall. We first investigated the effect of the applied potential as well as the frequency on the slip velocity. We have found that the slip velocity is roughly proportional to the applied voltage in line with the Helmholtz-Smoluchowski equation and there is an optimum frequency at which the slip velocity becomes maximized. To find the optimum parameters for mixing device we tested our device for various design parameters. It turned out that the best mixing effect is obtained approximately when the electrode angle is $30^{\circ}$, electrode width $200\;{\mu}m$, and the frequency of power supply 700 Hz.

A Study on the Electrical Characteristics of Organic Thin Film Transistor using Photoacryl as Gate Dielectric Layer (Photoacryl을 게이트 절연층으로 사용한 유기 박막트랜지스터의 전기적 특성에 관한 연구)

  • 김윤명;표상우;김준호;신재훈;김영관;김정수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.2
    • /
    • pp.110-118
    • /
    • 2002
  • Organic thin film transitors(OTFT) are of interest for use in broad area electronic applications. And recently organic electroluminescent devices(OELD) have been intensively investigated for using in full-color flat-panel display. We have fabricated inverted-staggered structure OTFTs at lower temperature using the fused-ring polycyclic aromatic hydrocarbon pentacene as the active eletronic material and photoacryl as the organic gate insulator. The field effect mobility is 0.039∼0.17 ㎠/Vs, on-off current ratio is 10$\^$6/, and threshold voltage is -7V. And here we report the study of driving emitting, Ir(ppy)$_3$, phosphorescent OELD with all organic thin film transistor and investigated its electrical characteristics. The OELD with a structure of ITO/TPD/8% Ir(ooy)$_3$ doped in BCP/BCP/Alq$_3$/Li:Al/Al and OTFT with a structure of inverted-stagged Al(gate electrode)/photoacry(gate insulator)/pentacene(p-type organic semiconductor)/ Au(source-drain electrode) were fabricated on the ITP patterned glass substrate. The electrical characteristics are turn-on voltage of -10V, and maximum luminance of about 90 cd/㎡. Device characteristics were quite different with that of only OELD.

Mechanical Properties and Wind Energy Harvesting Characteristics of PZT-Based Piezoelectric Ceramic Fiber Composites (PZT계 압전 세라믹 파이버 복합체의 기계적 물성과 압전 풍력 에너지 하베스팅 특성)

  • Lee, Min-Seon;Park, Jin-woo;Jeong, Young-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.2
    • /
    • pp.90-98
    • /
    • 2021
  • Piezoelectric ceramic fiber composite (PCFC) was fabricated using a planar electrode printed piezoelectric ceramic fiber driven in transverse mode for small-scale wind energy harvester applications. The PCFC consisted of an epoxy matrix material and piezoelectric ceramic fibers sandwiched by interdigitated electrode (IDE) patterned polyimide films. The PCFC showed an excellent mechanical performance under a continuous stress. For the fabrication of PCB cantilever harvester, five -PCFCs were vertically attached onto a flexible printed circuit board (PCB) substrate, and then PCFCs were serially connected through a printed Cu circuit. The energy harvesting performance was evaluated applying an inverted structure, which imples its free leading edge located at an open end but the trailing edge at a clamped end, to enhance strain energy in a wind tunnel. The output voltage of the PCB cantilever harvester was increased as the wind speed increased. The maximum output power was 17.2 ㎼ at a resistance load of 200 ㏀ and wind speed of 9 m/s. It is considered that the PCB cantilever energy harvester reveals a potential use for wind energy harvester applications.

Improvement of Bonding Strength Uniformity in Silicon-on-glass Process by Anchor Design (Silicon-on-glass 공정에서 접합력 균일도 향상을 위한 고정단 설계)

  • Park, Usung;An, Jun Eon;Yoon, Sungjin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.6
    • /
    • pp.423-427
    • /
    • 2017
  • In this paper, an anchor design that improves bonding strength uniformity in the silicon-on-glass (SOG) process is presented. The SOG process is widely used in conjunction with electrode-patterned glass substrates as a standard fabrication process for forming high-aspect-ratio movable silicon microstructures in various types of sensors, including inertial and resonant sensors. In the proposed anchor design, a trench separates the silicon-bonded area and the electrode contact area to prevent irregular bonding caused by the protrusion of the electrode layer beyond the glass surface. This technique can be conveniently adopted to almost all devices fabricated by the SOG process without the necessity of additional processes.

Transparent Oxide Thin Film Transistors with Transparent ZTO Channel and ZTO/Ag/ZTO Source/Drain Electrodes

  • Choi, Yoon-Young;Choi, Kwang-Hyuk;Kim, Han-Ki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.127-127
    • /
    • 2011
  • We investigate the transparent TFTs using a transparent ZnSnO3 (ZTO)/Ag/ZTO multilayer electrode as S/D electrodes with low resistivity of $3.24{\times}10^{-5}$ ohm-cm, and high transparency of 86.29% in ZTO based TFTs. The Transparent TFTs (TTFTs) are prepared on glass substrate coated 100 nm of ITO thin film. On atomic layer deposited $Al_2\;O_3$, 50 nm ZTO layer is deposited by RF magnetron sputtering through a shadow mask for channel layer using ZTO target with 1 : 1 molar ratio of ZnO : $SnO_2$. The power of 100W, the working pressure of 2mTorr, and the gas flow of Ar 20 sccm during the ZTO deposition. After channel layer deposition, a ZTO (35 nm)/Ag (12 nm)/ZTO(35 nm) multilayer is deposited by DC/RF magnetron sputtering to form transparent S/D electrodes which are patterned through the shadow mask. Devices are annealed in air at 300$^{\circ}C$ for 30 min following ZTO deposition. Using UV/Visible spectrometer, the optical transmittances of the TTFT using ZTO/Ag/ ZTO multilayer electrodes are compared with TFT using Mo electrode. The structural properties of ZTO based TTFT with ZTO/Ag/ZTO multilayer electrodes are analyzed by high resolution transmission electron microscopy (HREM) and X-ray photoelectron spectroscopy (XPS). The transfer and output characterization of ZTO TTFTs are examined by a customized probe station with HP4145B system in are.

  • PDF

Fabrication of transparent conductive thin films with Ag mesh shape using the polystyrene beads monolayer

  • Jung, Taeyoung;Choi, Eun Chang;Hong, Byungyou
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.313-313
    • /
    • 2016
  • Transparent conductive oxide (TCO) films have many disadvantages, such as rarity, possible exhaustion, process temperature limitations, and brittleness on a flexible substrate. In particular, as display technology moves toward flexible displays, TCO will become completely unsuitable due to its brittleness. To address theses issue, many researchers have been studying TCO substitutes. In recent efforts, metal nanowires, conducting polymers, carbon nanotube networks, graphene films, hybrid thin films, and metal meshes/grids have been evaluated as candidates to replace TCO electrodes. In this study, we fabricated the TCO film with Ag meshes shape using polystyrene (PS) beads monolayer on the substrate. The PS beads were used as a template to create the mesh pattern. We fabricated the monolayer on the flexible substrate (PES) with the well-aligned PS beads. Electrodes with Ag mesh shape were formed using this patterned monolayer. We could fabricated the Ag mesh electrode with the sheet resistance with $8ohm{\Omega}/{\Box}$.

  • PDF

Top Electrode Engineering in Organic Light-Emitting Devices Formed by Soft Contact Lamination

  • Lee, Tae-Woo;Zaumseil, Jana;Bao, Zhenan;Hsu, Julia W.P.;Rogers, John A.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.348-351
    • /
    • 2004
  • We describe a new approach for building organic light-emitting diodes (OLEDs), which is based on physical lamination (i.e. soft contact lamination (ScL)) of thin metal electrodes supported by an elastomeric layer (polydimethylsiloxane) against an electroluminescent organic. We find that the devices fabricated have much better performance than those constructed with conventional vacuum deposition process. In addition, the ScL is intrinsically compatible with the technique of soft lithograph so that it is easy to build patterned OLEDs with feature sizes into the nanometer regime.

  • PDF