• Title/Summary/Keyword: Pattern-Recognition

Search Result 2,477, Processing Time 0.032 seconds

Pattern Recognition based Neural Networks Distance Relaying Scheme (패턴인식형의 신경회로망 거리계전 기법)

  • Lee, B.K.;Yun, S.M.;Park, C.W.;Jung, H.S.;Shin, M.C.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.871-874
    • /
    • 1997
  • A new typed distance relaying scheme is proposed. Artificial neural networks are applied to the distance relaying system composed of pattern recognition based. The proposed distance relaying scheme have the two block of pattern recognition stages to estimate the fundamental frequency and to classify the fault types. The advantage of this approach is demonstrated by the random waves and the fault transient wave signals of EMTP(electromagnetic transients program) in power systems fault conditions. The proposed method is compared with the conventional method and the simulation results show the efficiency of the neural networks.

  • PDF

Acoustic Emission Studies on the Structural Integrity Test of Welded High Strength Steel using Pattern Recognition (패턴인식을 이용한 고장력강의 용접 구조건전성 평가에 대한 음향방출 사례연구)

  • Kim, Gil-Dong;Rhee, Zhang-Kyu
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2008.04a
    • /
    • pp.185-196
    • /
    • 2008
  • The objective of this study is to evaluate the mechanical behaviors and structural integrity of the weldment of high strength steel by using an acoustic emission (AE) techniques. Simple tension and AE tests were conducted against the 3 kind of welding test specimens. In order to analysis the effectiveness of weldability, joinability and structural integrity, we used K-means clustering method as a unsupervised learning pattern recognition algorithm for obtained multivariate AE main data sets, such as AE counts, energy, amplitude, hits, risetime, duration, counts to peak and rms signals. Through the experimental results, the effectiveness of the proposed method is discussed.

  • PDF

Acoustic Emission Studies on the Structural Integrity Test of Welded High Strength Steel using Pattern Recognition: Focused on Tensile Test (패턴인식을 이용한 고장력강의 용접 구조건전성 평가에 대한 음향방출 사례연구: 인장시험을 중심으로)

  • Kim, Gil-Dong;Rhee, Zhang-Kyu
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.4
    • /
    • pp.127-134
    • /
    • 2008
  • The objective of this study is to evaluate the mechanical behaviors and structural integrity of the weldment of high strength steel by using an acoustic emission (AE) techniques. Monotonic simple tension and AE tests were conducted against the 3 kinds of welded specimen. In order to analysis the effectiveness of weldability, joinability and structural integrity, we used K-means clustering method as a unsupervised learning pattern recognition algorithm for obtained multi-variate AE main data sets, such as AE counts, energy, amplitude, hits, risetime, duration, counts to peak and rms signals. Through the experimental results, the effectiveness of the proposed method is discussed.

Aging Diagnosis of Model Coil of HV Induction Motor Using HFPD and Neural Networks (HFPD 및 신경회로망을 이용한 고압 유도전동기 모델코일 열화진단)

  • Kim, Deok-Geun;Im, Jang-Seop;Yeo, In-Seon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.8
    • /
    • pp.361-367
    • /
    • 2002
  • Many failures in high voltage equipment are preceded by partial discharge activity. In this paper deals with the application of the high frequency partial discharge measurement technique in motorette. HFPD measurement is very effective method to detect the PD occurred in motorette which is the called name of test specimen for accelerating test of stator winding[1] In this study, CT type HFPD sensor is used to detect the partial discharges and a measured HFPD pattern is analyzed by fractal mathematics. The neural network algorithm is used to pattern recognition and ageing diagnosis. As a result of this study, the fractal dimensions are increased along to applied voltage and HFPD pattern recognition using neural network shown excellent recognition rate. Also, the ageing diagnosis of motorette has been Possible.

The Intelligence Algorithm of Semiconductor Package Evaluation by using Scanning Acoustic Tomograph (Scanning Acoustic Tomograph 방식을 이용한 지능형 반도체 평가 알고리즘)

  • Kim J. Y.;Kim C. H.;Song K. S.;Yang D. J.;Jhang J. H.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.91-96
    • /
    • 2005
  • In this study, researchers developed the estimative algorithm for artificial defects in semiconductor packages and performed it by pattern recognition technology. For this purpose, the estimative algorithm was included that researchers made software with MATLAB. The software consists of some procedures including ultrasonic image acquisition, equalization filtering, Self-Organizing Map and Backpropagation Neural Network. Self-Organizing Map and Backpropagation Neural Network are belong to methods of Neural Networks. And the pattern recognition technology has applied to classify three kinds of detective patterns in semiconductor packages: Crack, Delamination and Normal. According to the results, we were confirmed that estimative algorithm was provided the recognition rates of $75.7\%$ (for Crack) and $83_4\%$ (for Delamination) and $87.2\%$ (for Normal).

  • PDF

A Neuro-Fuzzy Based Circular Pattern Recognition Circuit Using Current-mode Techniques

  • Eguchi, Kei;Ueno, Fumio;Tabata, Toru;Zhu, Hongbing;Tatae, Yoshiaki
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.1029-1032
    • /
    • 2000
  • A neuro-fuzzy based circuit to recognize circuit pat-terns is proposed in this paper. The simple algorithm and exemption from the use of template patterns as well as multipliers enable the proposed circuit to implement on the hardware of an economical scale. Furthermore, thanks to the circuit design by using current-mode techniques, the proposed circuit call achieve easy extendability of tile circuit and efficient pattern recognition with high-speed. The validity of the proposed algorithm and tile circuit design is confirmed by computer simulations. The proposed pattern recognition circuit is integrable by a standard CMOS technology.

  • PDF

A Comparative Study on Neural Network Algorithms for Partial Discharge Pattern Recognition (부분방전 패턴인식기법으로서의 Neural Network 알고리즘 비교 분석)

  • Lee, Ho-Keun;Kim, Jeong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2004.05b
    • /
    • pp.109-112
    • /
    • 2004
  • In this study, the applicability of SOM(Self Organizing Map) algorithm to partial discharge pattern recognition have been investigated. For the purpose, using acquired data from the artificial defects in GIS, SOM algorithm which has some advantages such as data accumulation ability and the degradation trend trace ability was compared with conventionally used BP(Back Propagation) algorithm. As a result, basically BP algorithm was found out to be better than SOM algorithm. Therefore, it is needed to apply SOM algorithm in combination with BP algorithm in order to improve on-site applicability using the advantages of SOM. Also, for the pattern recognition by use of PRPDA(Phase Resolved Partial Discharge Analysis) it is required the normalization of the PRPDA graph. However, in case of the normalization both BP and SOM algorithm have shown worse results, so that it is required further study to solve the problem.

  • PDF

The Improvement of Pattern Recognition using CMAC Neural Networks (CMAC 신경회로망을 이용한 패턴인식 학습의 개선)

  • Kim, Jong-Man;Kim, Sung-Joong;Kwon, Oh-Sin;Kim, Hyong-Suk
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.492-494
    • /
    • 1993
  • CMAC (Cerebeller Model Articulation Controller) is kind of Neural Networks that imitate the human cerebellum. For storage and retrieval of learned data, the input of CMAC is used as a key to determine the memory location. he learned information is distributively stored in physical memory. The learning of CMAC is very fast and converged well, therefore, it effects the application of Pattern Recognition. Through the our experiment of Pattern Recognition, we will prove that CMAC is very suitable for On-line real time processing and incremental learning of Neural Networks.

  • PDF

Non-destructive evaluation and pattern recognition for SCRC columns using the AE technique

  • Du, Fangzhu;Li, Dongsheng
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.3
    • /
    • pp.173-190
    • /
    • 2019
  • Steel-confined reinforced concrete (SCRC) columns feature highly complex and invisible mechanisms that make damage evaluation and pattern recognition difficult. In the present article, the prevailing acoustic emission (AE) technique was applied to monitor and evaluate the damage process of steel-confined RC columns in a quasi-static test. AE energy-based indicators, such as index of damage and relax ratio, were proposed to trace the damage progress and quantitatively evaluate the damage state. The fuzzy C-means algorithm successfully discriminated the AE data of different patterns, validity analysis guaranteed cluster accuracy, and principal component analysis simplified the datasets. A detailed statistical investigation on typical AE features was conducted to relate the clustered AE signals to micro mechanisms and the observed damage patterns, and differences between steel-confined and unconfined RC columns were compared and illustrated.

Implementation of Pattern Recognition Algorithm Using Line Scan Camera for Recognition of Path and Location of AGV (무인운반차(AGV)의 주행경로 및 위치인식을 위한 라인스캔카메라를 이용한 패턴인식 알고리즘 구현)

  • Kim, Soo Hyun;Lee, Hyung Gyu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.1
    • /
    • pp.13-21
    • /
    • 2018
  • AGVS (Automated Guided Vehicle System) is a core technology of logistics automation which automatically moves specific objects or goods within a certain work space. Conventional AGVS generally requires the in-door localization system and each AGV equips expensive sensors such as laser, magnetic, inertial sensors for the route recognition and automatic navigation. thus the high installation cost is inevitable and there are many restrictions on route(path) modification or expansion. To address this issue, in this paper, we propose a cost-effective and scalable AGV based on a light-weight pattern recognition technique. The proposed pattern recognition technology not only enables autonomous driving by recognizing the route(path), but also provides a technique for figuring out the loc ation of AGV itself by recognizing the simple patterns(bar-code like) installed on the route. This significantly reduces the cost of implementing AGVS as well as benefiting from route modification and expansion. In order to verify the effectiveness of the proposed technique, we first implement a pattern recognition algorithm on a light-weight MCU(Micro Control Unit), and then verify the results by implementing an MCU_controlled AGV prototype.