• Title/Summary/Keyword: Pattern synthesis

Search Result 435, Processing Time 0.022 seconds

Effect of DPBll Gene for the Transcriptional Induction by DNA Damage During Cell Cycle in Saccharomyces cerevisiae (출아효모의 세포주기동안 DNA 상해에 의한 발현 유도에 미치는 DPB11 유전자의 영향)

  • 선우양일;임선희;배호정;김중현;김은아;김승일;김수현;박정은;김재우
    • Korean Journal of Microbiology
    • /
    • v.38 no.2
    • /
    • pp.96-102
    • /
    • 2002
  • The S-phase checkpoint mechanisms response to DNA damage or inhibition of DNA replication for maintenance of genetic stability in eukaryotic cells. These roles include cell cycle control arrest at S-phase and Iranscriptional induction of repair genes. To characterize the defects of dpbll mutant for both these responses, we examined the over-expression effect of DPBll gene, the sensitivity to HU, MMS, and the transcriptional pattern by DNA damage agent for RNRS mRNA. RNRS transcript is induced in response to a wide variety of agents that either damage D7A directly through chemical modification or induce stress by blocking DNA synthesis. As results, dpbll-1 cells are sensitive to DNA damage agents and the level of RNR3 mRNA is reduced approximately 40% than wild type cells. Moreover, we found the same results in dpb2-1 cells. Therefore, we propose that DPB2 and DPBll act as a sensor of replication that coordinates the transcriptional and cell cycle responses to replication blocks.

RANKL expression is mediated by p38 MAPK in rat periodontal ligament cells (백서 치주인대세포의 RANKL 발현에 대한 p38 MAPK의 역할)

  • Kim, Chong-Cheol;Kim, Young-Joon;Chung, Hyun-Ju;Kim, Ok-Su
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.3
    • /
    • pp.489-498
    • /
    • 2004
  • Recent studies have demonstrated that human periodontal ligament cells express receptor activation of nuclear factor ${\kappa}B$ ligand (RANKL) which enhances the bone resorbing activity of osteoclasts differentiated from hematopoietic preosteoclasts. The purpose of this study is to determine the effects of p38 MAPK and JNK kinase upon regulating RANKL and OPG in response to $IL-1{\beta}$(l ng/ml) in rat periodontal ligament cells. Soluble RANKL was measured by immunoassay. The effects of p38 MAPK on RANKL and OPG expression was determined by RT-PCR. The results were as follows: 1. Periodontal ligament cells which stimulated by $IL-1{\beta}$ increased soluble RANKL synthesis by dose-dependent pattern. 2. p38 MAP kinase inhibitor (SB203580) showed regulation of soluble RANKL expression by dose-dependent manners. 3. p38 MAP kinase inhibitor (SB203580) regulated the expression of RANKL, but it dose regulate the expresseion of OPG. 4. JNK (c-jun $NH_2-terminal$ kinase) inhibitor (PD98059) did not regulate mRANKL and mOPG. These results suggested that p38 MAPK play a significant role in RANKL gene expression.

The Plan Method for Residents in Townhouse Focused on the Communicational Viewpoint with Nature (자연과의 소통적 관점에서 본 타운하우스에서 거주자 치유를 위한 계획방법)

  • Park, In-Ji;Seo, Ji-Eun
    • Korean Institute of Interior Design Journal
    • /
    • v.26 no.6
    • /
    • pp.13-23
    • /
    • 2017
  • The purpose of this study is to analyze the expression method according to the planning of townhouse and the healing method that affects residents for communicating with natural environment, in order to propose resident-focused communication with nature for healing. The results are as follows. First, the expression of nature elements can be divided into 'direct' and 'indirect' and healing effects through nature can be divided into 'body' and 'psychology'. The healing method of residents through nature was classified into physical and psychological healing through openness, familiarity, comfort, and stability. Second, as an expression method according to townhouse planning, the arrangement plan induced active communication with nature through the arrangement according to topography and a common garden. In terms of construction plan, a bigger window or door than that of other residential spaces was installed on a wall, ceiling or opening to directly bring the nature of outside visually for more communication. Third, with regard to healing methods of townhouse, 'openness' which reduces depression and increases self-esteem, expands the view of residents. 'Familiarity', the healing method that can relieve the fatigue of eyes and bring psychological warmth and comfort, makes us feel familiar through the pattern and texture of woods and stones that are natural materials. 'Comfort' which heals residents by creating an outside space and bringing the nature elements through a huge window can provide psychological healing such as eased tension in daily life as well as physical healing such as vitamin D synthesis and the recovery of physiological function. Also, 'Stability' gives a comfortable feeling by applying the colors of finishing materials inside or seeing the colors of surrounding nature as it is through big windows. Finally, in order to support the results of this study more objectively, a follow-up study conducting a survey on the residents of townhouse is needed.

Genetic Variants of IL-13 and IL-4 in the Korean Population: Polymorphisms, Haplotypes and Linkage Disequilibrium

  • Ryu, Ha-Jung;Jung, Ho-Youl;Park, Jung-Sun;Kim, Jun-Woo;Kim, Hyung-Tae;Park, Choon-Sik;Han, Bok-Ghee;Koh, In-Song;Park, Chan;Kimm, Ku-Chan;Oh, Berm-Seok;Lee, Jong-Keuk
    • Genomics & Informatics
    • /
    • v.3 no.4
    • /
    • pp.149-153
    • /
    • 2005
  • Asthma is an inflammatory airways disease characterized by bronchial hyperresponsiveness and airways obstruction, which results from a complex interaction of genetic and environmental factors. Interleukin (IL)-13 and IL-4 are important in IgE synthesis and allergic inflammation, therefore genes encoding IL-13 and IL-4 are candidates for predisposition to asthma. In the present study, we screened single-nucleotide polymorphisms (SNPs) in IL-13 and IL-4 and examined whether they are risk factors for asthma. We resequenced all exons and the promoter region in 12 asthma patients and 12 normal controls, and identified 18 SNPs including 2 novel SNPs. The linkage disequilibrium(LD) pattern was evaluated with 16 common SNPs, and haplotypes were also estimated within the block. Although IL-13 and IL-4 are localized within 27 kb on chromosome 5q31 and share many biological profiles, this region was partitioned into 2 blocks. One SNP and three SNPs were determined as haplotype-taggingSNPs (htSNPs) within IL-13 and IL-4 haplotype-block, respectively. No significant associations were observed between any of the SNPs or haplotypes and development of asthma in small number of Korean subjects. However, the genetic variants of IL-13 and IL-4 would provide valuable strategies for the genotyping studies in large population.

Pattern Analysis of Volume of Basal Ganglia Structures in Patients with First-Episode Psychosis (초발 정신병 환자에서 기저핵 구조물 부피의 패턴분석)

  • Min, Sally;Lee, Tae Young;Kwak, Yoobin;Kwon, Jun Soo
    • Korean Journal of Biological Psychiatry
    • /
    • v.25 no.2
    • /
    • pp.38-43
    • /
    • 2018
  • Objectives Dopamine dysregulation has been regarded as one of the core pathologies in patients with schizophrenia. Since dopamine synthesis capacity has found to be inconsistent in patients with schizophrenia, current classification of patients based on clinical symptoms cannot reflect the neurochemical heterogeneity of the disease. Here we performed new subtyping of patients with first-episode psychosis (FEP) through biotype-based cluster analysis. We specifically suggested basal ganglia structural changes as a biotype, which deeply involves in the dopaminergic circuit. Methods Forty FEP and 40 demographically matched healthy participants underwent 3T T1 MRI. Whole brain parcellation was conducted, and volumes of total 6 regions of basal ganglia have been extracted as features for cluster analysis. We used K-means clustering, and external validation was conducted with Positive and Negative Syndrome Scale (PANSS). Results K-means clustering divided 40 FEP subjects into 2 clusters. Cluster 1 (n = 25) showed substantial volume decrease in 4 regions of basal ganglia compared to Cluster 2 (n = 15). Cluster 1 showed higher positive scales of PANSS compared with Cluster 2 (F = 2.333, p = 0.025). Compared to healthy controls, Cluster 1 showed smaller volumes in 4 regions, whereas Cluster 2 showed larger volumes in 3 regions. Conclusions Two subgroups have been found by cluster analysis, which showed a distinct difference in volume patterns of basal ganglia structures and positive symptom severity. The result possibly reflects the neurobiological heterogeneity of schizophrenia. Thus, the current study supports the importance of paradigm shift toward biotype-based diagnosis, instead of phenotype, for future precision psychiatry.

  • PDF

Fabrication of shape-controlled Au nanoparticle arrays for SERS substrates

  • Shin, Seon Mi;Choi, Kyeong Woo;Ye, Seong Ji;Kim, Young Yun;Park, O Ok
    • Advances in materials Research
    • /
    • v.3 no.3
    • /
    • pp.139-149
    • /
    • 2014
  • Surface enhanced Raman Scattering (SERS) has attracted attention because the technique enables detection of various chemicals, even down to single molecular scale. Among the diverse candidates for SERS substrates, Au nanoparticles are considered promising due to their fine optical properties, chemical stability and ease of surface modification. Therefore, the fabrication and optical characterization of gold particles on solid supports is highly desirable. Such structures have potential as SERS substrates because the localized surface plasmon resonance of gold nanoparticles is very sensitive to combined molecules and environments. In addition, it is well-known that the properties of Au nanoparticles are strongly dependent on their shape. In this work, arrays of shape-controlled Au nanoparticles were fabricated to exploit their enhanced and reproducible optical properties. First, shape-controlled Au nanoparticles were prepared via seed mediated solution-phase synthesis, including spheres, octahedra, and rhombic dodecahedra. Then, these shape-controlled Au nanoparticles were arranged on a PDMS substrate, which was nanopatterned using soft lithography of poly styrene particles. The Au nanoparticles were selectively located in a pattern of hexagonal spheres. In addition, the shape-controlled Au nanoparticles were arranged in various sizes of PDMS nanopatterns, which can be easily controlled by manipulating the size of polystyrene particles. Finally, the optical properties of the fabricated Au nanoparticle arrays were characterized by measuring surface enhanced Raman spectra with 4-nitrobenezenethiol.

Synthesis and Electrochemical Properties of Li3V2(PO4)3-LiMnPO4 Composite Cathode Material for Lithium-ion Batteries

  • Yun, Jin-Shik;Kim, Soo;Cho, Byung-Won;Lee, Kwan-Young;Chung, Kyung Yoon;Chang, Wonyoung
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.433-436
    • /
    • 2013
  • Carbon-coated $Li_3V_2(PO_4)_3-LiMnPO_4$ composite cathode materials are first reported in this work, prepared by the mechanochemical process with a complex metal oxide as the precursor and sucrose as the carbon source. X-ray diffraction pattern of the composite material indicates that both olivine $LiMnPO_4$ and monoclinic $Li_3V_2(PO_4)_3$ co-exist. We further investigated the electrochemical properties of our $Li_3V_2(PO_4)_3-LiMnPO_4$ composite cathode materials using galvanostatic charging/discharging tests, where our $Li_3V_2(PO_4)_3-LiMnPO_4$ composite electrode materials exhibit the charge/discharge efficiency of 91.9%, while $Li_3V_2(PO_4)_3$ and $LiMnPO_4$ exhibit the efficiency of 87.7 and 86.7% in the first cycle. The composites display unique electrochemical performances in terms of overvoltage and cycle stability, displaying a reduced gap of 141.6 mV between charge and discharge voltage and 95.0% capacity efficiency after $15^{th}$ cycles.

The Effect of Magnetism(Neodymium Magnet) on Activity of Osteoblast (뼈모세포의 활성도에 대한 자성의 효과에 관한 연구)

  • Cho, Young-Wook;Choi, Boo-Byung;Lee, Seong-Bok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.3
    • /
    • pp.185-193
    • /
    • 2003
  • The object of this study is to observe the effects of magnetism on the osteoblasts using a neodymium magnet. The osteoblasts was cultured under magnetic fields of varying intensities to evaluate the effect of magnetism on the activity and alkaline phosphatase acitivty of the osteoblasts. Osteoblasts were cultured in the cell density of $10^4$ for the evaluation of cell proliferation and 105/ml for the evaluation of ALP activity under 0. 10, 100, 500, 1000, 2000, 4000 gauss for 24 hour. For evaluation of osteoblast morphologic changes under magnetic, osteoblasts were observed by inverted microscope and TEM. To elucidate if IGF-receptors are increased under the magnetic field, we investigated osteoblasts by immunofluoroscence staining. The results were as follows: In the varying intensities of magnetic fields, the degree of cell proliferation was the highest in the magnetic field of 10 gauss and this gradually decreased up to 1000 gauss. In the magnetic fields stronger than 1000 gauss, the degree of the cell proliferation decreased to an even lower level than that of the control group. The ALP activity and protein synthesis showed a similar increase pattern as the degree of cell proliferation compared to the control group but showed little difference. Under the microscope, morphological change of the cells ( decrease in length and increase in roundness) were observed but no peculiarity of cell distribution could be found according to the magnetic field line. In the proper intensity of magnetic fields (10 gauss), the cultured cells showed increase in number of IGF Receptors compared to that of the control group.

PPARα-Target Gene Expression Requires TIS21/BTG2 Gene in Liver of the C57BL/6 Mice under Fasting Condition

  • Hong, Allen Eugene;Ryu, Min Sook;Kim, Seung Jun;Hwang, Seung Yong;Lim, In Kyoung
    • Molecules and Cells
    • /
    • v.41 no.2
    • /
    • pp.140-149
    • /
    • 2018
  • The $TIS21^{/BTG2/PC3}$ gene belongs to the antiproliferative gene (APRO) family and exhibits tumor suppressive activity. However, here we report that TIS21 controls lipid metabolism, rather than cell proliferation, under fasting condition. Using microarray analysis, whole gene expression changes were investigated in liver of TIS21 knockout (TIS21-KO) mice after 20 h fasting and compared with wild type (WT). Peroxisome proliferator-activated receptor alpha ($PPAR{\alpha}$) target gene expression was almost absent in contrast to increased lipid synthesis in the TIS21-KO mice compared to WT mice. Immunohistochemistry with hematoxylin and eosin staining revealed that lipid deposition was focal in the TIS21-KO liver as opposed to the diffuse and homogeneous pattern in the WT liver after 24 h starvation. In addition, cathepsin E expression was over 10 times higher in the TIS21-KO liver than that in the WT, as opposed to the significant reduction of thioltransferase in both adult and fetal livers. At present, we cannot account for the role of cathepsin E. However, downregulation of glutaredoxin 2 thioltransferase expression might affect hypoxic damage in the TIS21-KO liver. We suggest that the $TIS21^{/BTG2}$ gene might be essential to maintain energy metabolism and reducing power in the liver under fasting condition.

Adsorption and Photocatalytic Degradation of Dyes Using Synthesized Metal-Organic Framework NH2-MIL-101(Fe) (합성 금속-유기 골격체 NH2-MIL-101(Fe)를 이용한 염료의 흡착 및 광분해 제거)

  • Lee, Joon Yeob;Choi, Jeong-Hak
    • Journal of Environmental Science International
    • /
    • v.27 no.7
    • /
    • pp.611-620
    • /
    • 2018
  • In this study, a metal-organic framework (MOF) material $NH_2$-MIL-101(Fe) was synthesized using the solvothermal method, and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), UV-visible spectrophotometry, field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), and surface area measurements. The XRD pattern of the synthesized $NH_2$-MIL-101(Fe) was similar to the previously reported patterns of MIL-101 type materials, which indicated the successful synthesis of $NH_2$-MIL-101(Fe). The FT-IR spectrum showed the molecular structure and functional groups of the synthesized $NH_2$-MIL-101(Fe). The UV-visible absorbance spectrum indicated that the synthesized material could be activated as a photocatalyst under visible light irradiation. FE-SEM and TEM images showed the formation of hexagonal microspindle structures in the synthesized $NH_2$-MIL-101(Fe). Furthermore, the EDS spectrum indicated that the synthesized material consisted of Fe, N, O, and C elements. The synthesized $NH_2$-MIL-101(Fe) was then employed as an adsorbent and photocatalyst for the removal of Indigo carmine and Rhodamine B from aqueous solutions. The initial 30 min of adsorption for Indigo carmine and Rhodamine B without light irradiation achieved removal efficiencies of 83.6% and 70.7%, respectively. The removal efficiencies thereafter gradually increased with visible light irradiation for 180 min, and the overall removal efficiencies for Indigo carmine and Rhodamine B were 94.2% and 83.5%, respectively. These results indicate that the synthesized MOF material can be effectively applied as an adsorbent and photocatalyst for the removal of dyes.