• Title/Summary/Keyword: Pattern recognition and classification

Search Result 448, Processing Time 0.025 seconds

Detection and Classification of Defect Signals from Rotator by AE Signal Pattern Recognition (AE 신호 형상 인식법에 의한 회전체의 신호 검출 및 분류 연구)

  • Kim, Ku-Young;Lee, Kang-Yong;Kim, Hee-Soo;Lee, Hyun
    • Journal of the Korean Society for Railway
    • /
    • v.4 no.3
    • /
    • pp.79-86
    • /
    • 2001
  • The signal pattern recognition method by acoustic emission signal is applied to detect and classify the defects of a journal bearing in a power plant. AE signals of main defects such as overheating, wear and corrosion are obtained from a small scale model. To detect and classify the defects, AE signal pattern recognition program is developed. As the classification methods, the wavelet transformation analysis, the frequency domain analysis and time domain analysis are used. Among three analyses, the wavelet transformation analysis is most effective to detect and classify the defects of the journal bearing..

  • PDF

A Study on the Improvement of Multitree Pattern Recognition Algorithm (Multitree 형상 인식 기법의 성능 개선에 관한 연구)

  • 김태성;이정희;김성대
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.14 no.4
    • /
    • pp.348-359
    • /
    • 1989
  • The multitree pattern recognition algorithm proposed by [1] and [2] is modified in order to improve its performance. The basic idea of the multitree pattern classification algorithm is that the binary dceision tree used to classify an unknow pattern is constructed for each feature and that at each stage, classification rule decides whether to classify the unknown pattern or to extract the feature value according to the feature ordet. So the feature ordering needed in the calssification procedure is simple and the number of features used in the classification procedure is small compared with other classification algorithms. Thus the algorithm can be easily applied to real pattern recognition problems even when the number of features and that of the classes are very large. In this paper, the wighting factor assignment scheme in the decision procedure is modified and various classification rules are proposed by means of the weighting factor. And the branch and bound method is applied to feature subset selection and feature ordering. Several experimental results show that the performance of the multitree pattern classification algorithm is improved by the proposed scheme.

  • PDF

The Feature Extraction of Welding Flaw for Shape Recognition (용접결함의 형상인식을 위한 특징추출)

  • Kim, Jae-Yeol;You, Sin;Kim, Chang-Hyun;Song, Kyung-Seok;Yang, Dong-Jo;Lee, Chang-Sun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.304-309
    • /
    • 2003
  • In this study, natural flaws in welding parts are classified using the signal pattern classification method. The storage digital oscilloscope including FFT function and enveloped waveform generator is used and the signal pattern recognition procedure is made up the digital signal processing, feature extraction, feature selection and classifier design. It is composed with and discussed using the distance classifier that is based on euclidean distance the empirical Bayesian classifier. Feature extraction is performed using the class-mean scatter criteria. The signal pattern classification method is applied to the signal pattern recognition of natural flaws.

  • PDF

Hybrid Pattern Recognition Using a Combination of Different Features

  • Choi, Sang-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.11
    • /
    • pp.9-16
    • /
    • 2015
  • We propose a hybrid pattern recognition method that effectively combines two different features for improving data classification. We first extract the PCA (Principal Component Analysis) and LDA (Linear Discriminant Analysis) features, both of which are widely used in pattern recognition, to construct a set of basic features, and then evaluate the separability of each basic feature. According to the results of evaluation, we select only the basic features that contain a large amount of discriminative information for construction of the combined features. The experimental results for the various data sets in the UCI machine learning repository show that using the proposed combined features give better recognition rates than when solely using the PCA or LDA features.

Detection of Stator Winding Inter-Turn Short Circuit Faults in Permanent Magnet Synchronous Motors and Automatic Classification of Fault Severity via a Pattern Recognition System

  • CIRA, Ferhat;ARKAN, Muslum;GUMUS, Bilal
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.416-424
    • /
    • 2016
  • In this study, automatic detection of stator winding inter-turn short circuit fault (SWISCFs) in surface-mounted permanent magnet synchronous motors (SPMSMs) and automatic classification of fault severity via a pattern recognition system (PRS) are presented. In the case of a stator short circuit fault, performance losses become an important issue for SPMSMs. To detect stator winding short circuit faults automatically and to estimate the severity of the fault, an artificial neural network (ANN)-based PRS was used. It was found that the amplitude of the third harmonic of the current was the most distinctive characteristic for detecting the short circuit fault ratio of the SPMSM. To validate the proposed method, both simulation results and experimental results are presented.

A Study on the Voiced, Unvoiced and Silence Classification (유.무성음 및 묵음 식별에 관한 연구)

  • 김명환
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1984.12a
    • /
    • pp.73-77
    • /
    • 1984
  • This paper reports on a Voiced-Unvoiced-Silence Classification of speech for Korean Speech Recognition. In this paper, it is describe a method which uses a Pattern Recognition Technique for classifying a given speech segment into the three classes. Best result is obtained with the combination using ZCR, P1, Ep and classification error rate is less than 1%.

  • PDF

The optimum pattern recognition and classification using neural networks (신경망을 이용한 최적 패턴인식 및 분류)

  • Kim, J.H.;Seo, B.H.;Park, S.W.
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.92-94
    • /
    • 2004
  • We become an industry information society which is advanced to the altitude with the today. The information to be loading various goods each other together at a circumstance environment is increasing extremely. The restriction recognizes the data of many Quantity and it follows because the human deals the task to classify. The development of a mathematical formulation for solving a problem like this is often very difficult. But Artificial intelligent systems such as neural networks have been successfully applied to solving complex problems in the area of pattern recognition and classification. So, in this paper a neural network approach is used to recognize and classification problem was broken into two steps. The first step consist of using a neural network to recognize the existence of purpose pattern. The second step consist of a neural network to classify the kind of the first step pattern. The neural network leaning algorithm is to use error back-propagation algorithm and to find the weight and the bias of optimum. Finally two step simulation are presented showing the efficacy of using neural networks for purpose recognition and classification.

  • PDF

Temperature Classification of Heat-treated Metals using Pattern Recognition of Ultrasonic Signal (초음파 신호의 패턴 인식에 의한 금속의 열처리 온도 분류)

  • Im, Rae-Muk;Sin, Dong-Hwan;Kim, Deok-Yeong;Kim, Seong-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.12
    • /
    • pp.1544-1553
    • /
    • 1999
  • Recently, ultrasonic testing techniques have been widely used in the evaluation of the quality of metal. In this experiment, six heat-treated temperature of specimen have been considered : 0, 1200, 1250, 1300, 1350 and 1387$^{\circ}C$. As heat-treated temperature increases, the grain size of stainless steel also increases and then, eventually make it destroy. In this paper, a pattern recognition method is proposed to identify the heat-treated temperature of metals by evidence accumulation based on artificial intelligence with multiple feature parameters; difference absolute mean value(DAMV), variance(VAR), mean frequency(MEANF), auto regressive model coefficient(ARC), linear cepstrum coefficient(LCC) and adaptive cepstrum vector(ACV). The grain signal pattern recognition is carried out through the evidence accumulation procedure using the distances measured with reference parameters. Especially ACV is superior to the other parameters. The results (96% successful pattern classification) are presented to support the feasibility of the suggested approach for ultrasonic grain signal pattern recognition.

  • PDF

Recognition and Classification of Power Quality Disturbances on the basis of Pattern Linguistic Values

  • Liu, XiaoSheng;Liu, Bo;Xu, DianGuo
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.309-319
    • /
    • 2016
  • This paper presents a new recognition and classification method for power quality (PQ) disturbances on the basis of pattern linguistic values. This method solves the difficulty of recognizing disturbances rapidly and accurately by using fuzzy logic. This method uses classification disturbance patterns to define the linguistic values of fuzzy input variables and used the input variables of corresponding disturbance pattern to set membership functions. This method also sets the fuzzy rules by analyzing the distribution regularities of the input variable values. One characteristic of this method is that the linguistic values of fuzzy input variables and the setting of membership functions are not only related to the input variables but also to the character of classification disturbance and the classification results. Furthermore, the number of fuzzy rules is equal to the number of disturbance patterns. By using this method for disturbance classification, the membership function and design of fuzzy rules are directly related to the objective of classification, thus effectively reducing the complexity of the design process and yielding accurate classification results. The classification results of the simulation and measured data verify the feasibility and effectiveness of this method.

The Classification of U.T Defects in the Pressure Vessel Weld using the Pattern Recognition Analysis (형상인식을 이용한 압력용기 용접부 결함 특성 분류)

  • Shim, C.M.;Joo, Y.S.;Hong, S.S.;Jang, K.O.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.2
    • /
    • pp.11-19
    • /
    • 1993
  • It is very essential to get the accurate classification of defects in primary pressure vessel weld for the safety of nuclear power plant. The signal analysis using the digital signal processing and pattern recognition is performed to classify UT defects extracting feature vector from ultrasonic signals. The minimum distance classifier and the maximum likelihood classifier based on statistics were applied in this experiment to discriminate ultrasonics data obtained form both the training specimens (slit, hole) and the testing specimens(crack, slag). The classification rate was measured using pattern classifier. Results of this study show the promise in solving the many flaw classification problems that exist today.

  • PDF