In order to develop reliable on-site partial discharge(PD) pattern recognition algorithm, the fuzzy neural network based on fuzzy set(FNN) and the polynomial network pattern classifier based on fuzzy Inference(PNC) were investigated and designed. Using PD data measured from laboratory defect models, these algorithms were learned and tested. Considering on-site situation where it is not easy to obtain voltage phases in PRPDA(Phase Resolved Partial Discharge Analysis), the measured PD data were artificially changed with shifted voltage phases for the test of the proposed algorithms. As input vectors of the algorithms, PRPD data themselves were adopted instead of using statistical parameters such as skewness and kurtotis, to improve uncertainty of statistical parameters, even though the number of input vectors were considerably increased. Also, results of the proposed neuro-fuzzy algorithms were compared with that of conventional BP-NN(Back Propagation Neural Networks) algorithm using the same data. The FNN and PNC algorithms proposed in this study were appeared to have better performance than BP-NN algorithm.
In this study, researchers developed the estimative algorithm for artificial defect in semiconductor packages and performed it by pattern recognition technology. For this purpose, the estimative algorithm was included that researchers made software with MATLAB. The software consists of some procedures including ultrasonic image acquisition, equalization filtering, Self-Organizing Map and Backpropagation Neural Network. Self-organizing Map and Backpropagation Neural Network are belong to methods of Neural Networks. And the pattern recognition technology has applied to classify three kinds of detective patterns in semiconductor packages : Crack, Delamination and Normal. According to the results, we were confirmed that estimative algerian was provided the recognition rates of 75.7% (for Crack) and 83.4% (for Delamination) and 87.2 % (for Normal).
In pattern recognition, the conventional neural networks contain a large number of weights and require considerable training times and preprocessor to classify a transformed patterns. In this paper, we propose a constrained pattern recognition method which is insensitive to rotation of input pattern by various degrees and does not need any preprocessing. Because these neural networks can not be trained by the conventional training algorithm such as error back propagation, a novel training algorithm is suggested. As such a system is useful in problem related to calssify overse side and reverse side of 500 won coin. As an illustrative example, identification problem of overse and reverse side of 500 won coin is shown.
본 논문에서는 단일 글꼴에 의존하는 원형 패턴 벡터(circular pattern vectors)를 이용하여 위치 이동, 크기 변화 그리고 회전에 무관한 새로운 인쇄체 한글 인식 알고리즘을 제안한다. 제안한 알고리즘은 2진 형태론(binary morphology)을 이용하여 입력 문자에 존재하는 잡음(noise)을 제거한 후, 원형 패턴벡터를 추출한다. 추출된 원형 패턴 벡터는 주어진 문자의 무게 중심을 원의 중심으로 하여 그린 여러 원주 상에 위치한 공간적인 분포 값을 나타내는 것이다. 마지막으로, 실험 문자는 기준 원형 패턴 벡터와 실험 원형 패턴 벡터간의 거리가 최소가 되는 기준 문자로 인식하게 된다. 제안한 알고리즘의 성능을 평가하기 위해, 크기 변화와 회전 변형이 있는 완성형 바탕체 한글 2,350자를 대상으로 모의 실험을 수행하였다. 제안한 알고리즘은 기존의 고리 투영 알고리즘보다 크기 변화와 회전 변형이 있는 한글 인식에 있어서 우수함을 보였다.
컴퓨터 비전(Computer vision) 분야에서 물체인식을 위한 많은 알고리즘이 연구되고 있다. 그중 특징점(feature) 기반의 SURF(Speeded Up Robust Features) 알고리즘은 다른 알고리즘에 비해 속도와 정확도 면에서 우수하다. 하지만 SURF 알고리즘은 대응점 검출 시 대응점 오정합으로 물체인식에 실패하는 단점이 있다. 본 논문은 물체 인식률을 향상하기 위하여 SURF와 RANSAC(Random Sample Consensus) 알고리즘을 기반으로 물체인식 시스템을 구현하고, 패턴인식 필터링을 제안하였다. 또한, 실험을 통하여 물체 인식률 향상 결과를 제시하였다.
본 논문은 [1]와 [2]에 의해 제안된 multitree 형상 인식 기법의 성능 개선에 관한 논문이다. Multitree 형상 인식 기법의 기본적인 생각은, Classifier 설계과정에서 각 특징별로 Binary Decision Tree 를 구성하고, 이들의 탐색 순서를 결정하며, 인식 과정에서는 앞에서 정한 탐색 순서에 의거하여, BDT(Binary Decision Tree)를 탐색해 나간다는 것이다. 이때 BDT를 추가하여 탐색하기 전에 그때까지 얻은 정보를 이용하여 입력 물체를 인식할 수 있는지에 대한 여부를 결정하며, 인식이 가능한 경우 BDT의 탐색을 멈추고, 인식이 불가능한 경우 BDT의 탐색을 계속해 나간다. 이 방법은 BDT를 각 특징별로 만들기 때문에 새로운 특징의 삭제나 첨가가 상당히 용이하며 인식에 사용되는 특징의 갯수가 감소하게 된다. 따라서 이 알고리즘은 특징의 수가 많거나 class수가 많을 경우 쉽게 이용될 수 있다. 본 논문은 각 특징에서 구한 근사화된 확률 분포로부터 입력 특징값에 대한 확률값을 구해 인식에 이용하였으며, 이 값을 이용한ㄴ 여러가지 인식 방법을 제안하였다. 그리고 Branch and Bound 방법을 사용하여 특징의 선택 순서와 탐색 범위를 구하였다. 위에서 제안한 것들을 실험한 결과 기존의 multitree형상 인식 기법보다 본 논문에서 제안한 기법의 성능이 향상되었다.
Image normalization is one of the important areas in pattern recognition. Also, log-polar images are useful in the sense that their image data size is reduced dramatically comparing with conventional images and it is possible to develop faster pattern recognition algorithms. Especially, the log-polar image is very similar with the structure of human eyes. However, there are almost no researches on pattern recognition using the log-polar images while a number of researches on visual tracking have been executed. We propose an image normalization technique of log-polar images using momentums applicable for affine-invariant pattern recognition. We handle basic distortions of an image including translation, rotation, scaling, and skew of a log-polar image. The algorithm is experimented in a PC-based real-time vision system successfully.
Face recognition has recently become one of the most popular research areas in the fields of computer vision, machine learning, and pattern recognition because it spans numerous applications, such as access control, surveillance, security, credit-card verification, and criminal identification. In this paper, we propose a simple descriptor called an ECSP(Extended Center-Symmetric Pattern) for illumination-robust face recognition. The ECSP operator encodes the texture information of a local face region by emphasizing diagonal components of a previous CS-LBP(Center-Symmetric Local Binary Pattern). Here, the diagonal components are emphasized because facial textures along the diagonal direction contain much more information than those of other directions. The facial texture information of the ECSP operator is then used as the input image of an image covariance-based feature extraction algorithm such as 2D-PCA(Two-Dimensional Principal Component Analysis). Performance evaluation of the proposed approach was carried out using various binary pattern operators and recognition algorithms on the Yale B database. The experimental results demonstrated that the proposed approach achieved better recognition accuracy than other approaches, and we confirmed that the proposed approach is effective against illumination variation.
A Walsh function based associative memory is capable of storing m patterns in a single pattern storage space with Walsh encoding of each pattern. Furthermore, each stored pattern can be matched against the stored patterns extremely fast using algorithmic parallel processing. As such, this special type of memory is ideal for real-time processing of large scale information. However this incredible efficiency generates large amount of crosstalk between stored patterns that incurs mis-recognition. This crosstalk is a function of the set of different sequencies [number of zero crossings] of the Walsh function associated with each pattern to be stored. This sequency set is thus optimized in this paper to minimize mis-recognition, as well as to maximize memory saying. In this paper, this Walsh memory has been applied to the problem of face recognition, where PCA is applied to dimensionality reduction. The maximum Walsh spectral component and genetic algorithm (GA) are applied to determine the optimal Walsh function set to be associated with the data to be stored. The experimental results indicate that the proposed methods provide a novel and robust technology to achieve an error-free, real-time, and memory-saving recognition of large scale patterns.
본 논문에서는 권종 인식을 위하여 범용 CIS(contact image sensor)를 사용하여 각 권종별로 취득된 지폐 반사 전체 이미지의 특징 데이터(feature data) 성분을 추출하여 권종 인식의 데이터로 사용함으로써 개별 객체의 특색이나 특징들의 집합인 패턴을 이용한 효과적인 이미지 처리 방법을 제안하였다. 본 논문에서 제안한 방법을 통하여 각 권종별 추출된 이미지의 특징 데이터는 이미지 변화에 덜 민감하면서 공간적인 분포를 잘 나타내기 때문에 권종 인식을 하는데 있어서 우수한 방법이 될 수 있다. 제안된 알고리즘의 테스트를 위하여 시료 진폐는 각 국가 및 권종 당 100매씩을 테스트 하였으며, 제한적인 시료로 인한 판정 결과의 신뢰도를 확보하고자 방향별 총 10회씩 투입하였다. 시험 결과 한국 원화는 100% 인식하였으며, 유로화는 5유로의 경우 99.9%, 20유로의 경우 99.8%의 인식률을 보였으며, 터키 리라화는 20리라의 경우 99.8.%, 50리라의 경우 99.8%의 인식률을 보였고, 나머지 미국 달러화, 중국 위안화, 영국 파운드화 등의 권종은 100% 인식되어 제안된 알고리즘이 상용 제품에 적용 가능함을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.