• 제목/요약/키워드: Pattern recognition algorithm

검색결과 767건 처리시간 0.051초

Neuro-Fuzzy 기법을 이용한 부분방전 패턴인식에 대한 연구 (A Study on Partial Discharge Pattern Recognition Using Neuro-Fuzzy Techniques)

  • 박건준;김길성;오성권;최원;김정태
    • 전기학회논문지
    • /
    • 제57권12호
    • /
    • pp.2313-2321
    • /
    • 2008
  • In order to develop reliable on-site partial discharge(PD) pattern recognition algorithm, the fuzzy neural network based on fuzzy set(FNN) and the polynomial network pattern classifier based on fuzzy Inference(PNC) were investigated and designed. Using PD data measured from laboratory defect models, these algorithms were learned and tested. Considering on-site situation where it is not easy to obtain voltage phases in PRPDA(Phase Resolved Partial Discharge Analysis), the measured PD data were artificially changed with shifted voltage phases for the test of the proposed algorithms. As input vectors of the algorithms, PRPD data themselves were adopted instead of using statistical parameters such as skewness and kurtotis, to improve uncertainty of statistical parameters, even though the number of input vectors were considerably increased. Also, results of the proposed neuro-fuzzy algorithms were compared with that of conventional BP-NN(Back Propagation Neural Networks) algorithm using the same data. The FNN and PNC algorithms proposed in this study were appeared to have better performance than BP-NN algorithm.

자기조직화 지도를 이용한 반도체 패키지 내부결함의 패턴분류 알고리즘 개발 (The Development of Pattern Classification for Inner Defects in Semiconductor Packages by Self-Organizing Map)

  • 김재열;윤성운;김훈조;김창현;양동조;송경석
    • 한국공작기계학회논문집
    • /
    • 제12권2호
    • /
    • pp.65-70
    • /
    • 2003
  • In this study, researchers developed the estimative algorithm for artificial defect in semiconductor packages and performed it by pattern recognition technology. For this purpose, the estimative algorithm was included that researchers made software with MATLAB. The software consists of some procedures including ultrasonic image acquisition, equalization filtering, Self-Organizing Map and Backpropagation Neural Network. Self-organizing Map and Backpropagation Neural Network are belong to methods of Neural Networks. And the pattern recognition technology has applied to classify three kinds of detective patterns in semiconductor packages : Crack, Delamination and Normal. According to the results, we were confirmed that estimative algerian was provided the recognition rates of 75.7% (for Crack) and 83.4% (for Delamination) and 87.2 % (for Normal).

회전량에 불변인 제한 신경회로망을 이용한 패턴인식 (Rotation-invariant pattern recognition system with constrained neural network)

  • 나희승;박영진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.619-623
    • /
    • 1992
  • In pattern recognition, the conventional neural networks contain a large number of weights and require considerable training times and preprocessor to classify a transformed patterns. In this paper, we propose a constrained pattern recognition method which is insensitive to rotation of input pattern by various degrees and does not need any preprocessing. Because these neural networks can not be trained by the conventional training algorithm such as error back propagation, a novel training algorithm is suggested. As such a system is useful in problem related to calssify overse side and reverse side of 500 won coin. As an illustrative example, identification problem of overse and reverse side of 500 won coin is shown.

  • PDF

원형 패턴 벡터를 이용한 인쇄체 한글 인식 (Recognition of Printed Hangul Text Using Circular Pattern Vectors)

  • 정지호;최태영
    • 대한전자공학회논문지SP
    • /
    • 제38권3호
    • /
    • pp.269-281
    • /
    • 2001
  • 본 논문에서는 단일 글꼴에 의존하는 원형 패턴 벡터(circular pattern vectors)를 이용하여 위치 이동, 크기 변화 그리고 회전에 무관한 새로운 인쇄체 한글 인식 알고리즘을 제안한다. 제안한 알고리즘은 2진 형태론(binary morphology)을 이용하여 입력 문자에 존재하는 잡음(noise)을 제거한 후, 원형 패턴벡터를 추출한다. 추출된 원형 패턴 벡터는 주어진 문자의 무게 중심을 원의 중심으로 하여 그린 여러 원주 상에 위치한 공간적인 분포 값을 나타내는 것이다. 마지막으로, 실험 문자는 기준 원형 패턴 벡터와 실험 원형 패턴 벡터간의 거리가 최소가 되는 기준 문자로 인식하게 된다. 제안한 알고리즘의 성능을 평가하기 위해, 크기 변화와 회전 변형이 있는 완성형 바탕체 한글 2,350자를 대상으로 모의 실험을 수행하였다. 제안한 알고리즘은 기존의 고리 투영 알고리즘보다 크기 변화와 회전 변형이 있는 한글 인식에 있어서 우수함을 보였다.

  • PDF

패턴인식 필터링을 적용한 물체인식 성능 향상 기법 (A Method for Improving Object Recognition Using Pattern Recognition Filtering)

  • 박진렬;이승기
    • 전자공학회논문지
    • /
    • 제53권6호
    • /
    • pp.122-129
    • /
    • 2016
  • 컴퓨터 비전(Computer vision) 분야에서 물체인식을 위한 많은 알고리즘이 연구되고 있다. 그중 특징점(feature) 기반의 SURF(Speeded Up Robust Features) 알고리즘은 다른 알고리즘에 비해 속도와 정확도 면에서 우수하다. 하지만 SURF 알고리즘은 대응점 검출 시 대응점 오정합으로 물체인식에 실패하는 단점이 있다. 본 논문은 물체 인식률을 향상하기 위하여 SURF와 RANSAC(Random Sample Consensus) 알고리즘을 기반으로 물체인식 시스템을 구현하고, 패턴인식 필터링을 제안하였다. 또한, 실험을 통하여 물체 인식률 향상 결과를 제시하였다.

Multitree 형상 인식 기법의 성능 개선에 관한 연구 (A Study on the Improvement of Multitree Pattern Recognition Algorithm)

  • 김태성;이정희;김성대
    • 한국통신학회논문지
    • /
    • 제14권4호
    • /
    • pp.348-359
    • /
    • 1989
  • 본 논문은 [1]와 [2]에 의해 제안된 multitree 형상 인식 기법의 성능 개선에 관한 논문이다. Multitree 형상 인식 기법의 기본적인 생각은, Classifier 설계과정에서 각 특징별로 Binary Decision Tree 를 구성하고, 이들의 탐색 순서를 결정하며, 인식 과정에서는 앞에서 정한 탐색 순서에 의거하여, BDT(Binary Decision Tree)를 탐색해 나간다는 것이다. 이때 BDT를 추가하여 탐색하기 전에 그때까지 얻은 정보를 이용하여 입력 물체를 인식할 수 있는지에 대한 여부를 결정하며, 인식이 가능한 경우 BDT의 탐색을 멈추고, 인식이 불가능한 경우 BDT의 탐색을 계속해 나간다. 이 방법은 BDT를 각 특징별로 만들기 때문에 새로운 특징의 삭제나 첨가가 상당히 용이하며 인식에 사용되는 특징의 갯수가 감소하게 된다. 따라서 이 알고리즘은 특징의 수가 많거나 class수가 많을 경우 쉽게 이용될 수 있다. 본 논문은 각 특징에서 구한 근사화된 확률 분포로부터 입력 특징값에 대한 확률값을 구해 인식에 이용하였으며, 이 값을 이용한ㄴ 여러가지 인식 방법을 제안하였다. 그리고 Branch and Bound 방법을 사용하여 특징의 선택 순서와 탐색 범위를 구하였다. 위에서 제안한 것들을 실험한 결과 기존의 multitree형상 인식 기법보다 본 논문에서 제안한 기법의 성능이 향상되었다.

  • PDF

Affine-Invariant Image normalization for Log-Polar Images using Momentums

  • Son, Young-Ho;You, Bum-Jae;Oh, Sang-Rok;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1140-1145
    • /
    • 2003
  • Image normalization is one of the important areas in pattern recognition. Also, log-polar images are useful in the sense that their image data size is reduced dramatically comparing with conventional images and it is possible to develop faster pattern recognition algorithms. Especially, the log-polar image is very similar with the structure of human eyes. However, there are almost no researches on pattern recognition using the log-polar images while a number of researches on visual tracking have been executed. We propose an image normalization technique of log-polar images using momentums applicable for affine-invariant pattern recognition. We handle basic distortions of an image including translation, rotation, scaling, and skew of a log-polar image. The algorithm is experimented in a PC-based real-time vision system successfully.

  • PDF

Extended Center-Symmetric Pattern과 2D-PCA를 이용한 얼굴인식 (Face Recognition using Extended Center-Symmetric Pattern and 2D-PCA)

  • 이현구;김동주
    • 디지털산업정보학회논문지
    • /
    • 제9권2호
    • /
    • pp.111-119
    • /
    • 2013
  • Face recognition has recently become one of the most popular research areas in the fields of computer vision, machine learning, and pattern recognition because it spans numerous applications, such as access control, surveillance, security, credit-card verification, and criminal identification. In this paper, we propose a simple descriptor called an ECSP(Extended Center-Symmetric Pattern) for illumination-robust face recognition. The ECSP operator encodes the texture information of a local face region by emphasizing diagonal components of a previous CS-LBP(Center-Symmetric Local Binary Pattern). Here, the diagonal components are emphasized because facial textures along the diagonal direction contain much more information than those of other directions. The facial texture information of the ECSP operator is then used as the input image of an image covariance-based feature extraction algorithm such as 2D-PCA(Two-Dimensional Principal Component Analysis). Performance evaluation of the proposed approach was carried out using various binary pattern operators and recognition algorithms on the Yale B database. The experimental results demonstrated that the proposed approach achieved better recognition accuracy than other approaches, and we confirmed that the proposed approach is effective against illumination variation.

A Walsh-Based Distributed Associative Memory with Genetic Algorithm Maximization of Storage Capacity for Face Recognition

  • Kim, Kyung-A;Oh, Se-Young
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.640-643
    • /
    • 2003
  • A Walsh function based associative memory is capable of storing m patterns in a single pattern storage space with Walsh encoding of each pattern. Furthermore, each stored pattern can be matched against the stored patterns extremely fast using algorithmic parallel processing. As such, this special type of memory is ideal for real-time processing of large scale information. However this incredible efficiency generates large amount of crosstalk between stored patterns that incurs mis-recognition. This crosstalk is a function of the set of different sequencies [number of zero crossings] of the Walsh function associated with each pattern to be stored. This sequency set is thus optimized in this paper to minimize mis-recognition, as well as to maximize memory saying. In this paper, this Walsh memory has been applied to the problem of face recognition, where PCA is applied to dimensionality reduction. The maximum Walsh spectral component and genetic algorithm (GA) are applied to determine the optimal Walsh function set to be associated with the data to be stored. The experimental results indicate that the proposed methods provide a novel and robust technology to achieve an error-free, real-time, and memory-saving recognition of large scale patterns.

  • PDF

고속 지폐 계수를 위한 패턴 인식 알고리즘 구현 (An Implementation of Pattern Recognition Algorithm for Fast Paper Currency Counting)

  • 김선구;강병권
    • 한국통신학회논문지
    • /
    • 제39B권7호
    • /
    • pp.459-466
    • /
    • 2014
  • 본 논문에서는 권종 인식을 위하여 범용 CIS(contact image sensor)를 사용하여 각 권종별로 취득된 지폐 반사 전체 이미지의 특징 데이터(feature data) 성분을 추출하여 권종 인식의 데이터로 사용함으로써 개별 객체의 특색이나 특징들의 집합인 패턴을 이용한 효과적인 이미지 처리 방법을 제안하였다. 본 논문에서 제안한 방법을 통하여 각 권종별 추출된 이미지의 특징 데이터는 이미지 변화에 덜 민감하면서 공간적인 분포를 잘 나타내기 때문에 권종 인식을 하는데 있어서 우수한 방법이 될 수 있다. 제안된 알고리즘의 테스트를 위하여 시료 진폐는 각 국가 및 권종 당 100매씩을 테스트 하였으며, 제한적인 시료로 인한 판정 결과의 신뢰도를 확보하고자 방향별 총 10회씩 투입하였다. 시험 결과 한국 원화는 100% 인식하였으며, 유로화는 5유로의 경우 99.9%, 20유로의 경우 99.8%의 인식률을 보였으며, 터키 리라화는 20리라의 경우 99.8.%, 50리라의 경우 99.8%의 인식률을 보였고, 나머지 미국 달러화, 중국 위안화, 영국 파운드화 등의 권종은 100% 인식되어 제안된 알고리즘이 상용 제품에 적용 가능함을 보였다.