• Title/Summary/Keyword: Pattern classifier

Search Result 382, Processing Time 0.029 seconds

Design of Optimized Radial Basis Function Neural Networks Classifier Using EMC Sensor for Partial Discharge Pattern Recognition (부분방전 패턴인식을 위해 EMC센서를 이용한 최적화된 RBFNNs 분류기 설계)

  • Jeong, Byeong-Jin;Lee, Seung-Cheol;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.9
    • /
    • pp.1392-1401
    • /
    • 2017
  • In this study, the design methodology of pattern classification is introduced for avoiding faults through partial discharge occurring in the power facilities and local sites. In order to classify some partial discharge types according to the characteristics of each feature, the model is constructed by using the Radial Basis Function Neural Networks(RBFNNs) and Particle Swarm Optimization(PSO). In the input layer of the RBFNNs, the feature vector is searched and the dimension is reduced through Principal Component Analysis(PCA) and PSO. In the hidden layer, the fuzzy coefficients of the fuzzy clustering method(FCM) are tuned using PSO. Raw datasets for partial discharge are obtained through the Motor Insulation Monitoring System(MIMS) instrument using an Epoxy Mica Coupling(EMC) sensor. The preprocessed datasets for partial discharge are acquired through the Phase Resolved Partial Discharge Analysis(PRPDA) preprocessing algorithm to obtain partial discharge types such as void, corona, surface, and slot discharges. Also, when the amplitude size is considered as two types of both the maximum value and the average value in the process for extracting the preprocessed datasets, two different kinds of feature datasets are produced. In this study, the classification ratio between the proposed RBFNNs model and other classifiers is shown by using the two different kinds of feature datasets, and also we demonstrate the proposed model shows superiority from the viewpoint of classification performance.

Distance-Based Keystroke Dynamics Smartphone Authentication and Threshold Formula Model (거리기반 키스트로크 다이나믹스 스마트폰 인증과 임계값 공식 모델)

  • Lee, Shincheol;Hwang, Jung Yeon;Lee, Hyungu;Kim, Dong In;Lee, Sung-Hoon;Shin, Ji Sun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.2
    • /
    • pp.369-383
    • /
    • 2018
  • User authentication using PIN input or lock pattern is widely used as a user authentication method of smartphones. However, it is vulnerable to shoulder surfing attacks and because of low complexity of PIN and lock pattern, it has low security. To complement these problems, keystroke dynamics have been used as an authentication method for complex authentication and researches on this have been in progress. However, many studies have used imposter data in classifier training and validation. When keystroke dynamics authentications are actually applied in reality, it is realistic to use only legitimate user data for training, and using other people's data as imposter training data may result in problems such as leakage of authentication data and invasion of privacy. In response, in this paper, we experiment and obtain the optimal ratio of the thresholds for distance based classification. By suggesting the optimal ratio, we try to contribute to the real applications of keystroke authentications.

Sound Monitoring System of Machining using the Statistical Features of Frequency Domain and Artificial Neural Network (주파수 영역의 통계적 특징과 인공신경망을 이용한 기계가공의 사운드 모니터링 시스템)

  • Lee, Kyeong-Min;Vununu, Caleb;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.8
    • /
    • pp.837-848
    • /
    • 2018
  • Monitoring technology of machining has a long history since unmanned machining was introduced. Despite the long history, many researchers have presented new approaches continuously in this area. Sound based machine fault diagnosis is the process consisting of detecting automatically the damages that affect the machines by analyzing the sounds they produce during their operating time. The collected sound is corrupted by the surrounding work environment. Therefore, the most important part of the diagnosis is to find hidden elements inside the data that can represent the error pattern. This paper presents a feature extraction methodology that combines various digital signal processing and pattern recognition methods for the analysis of the sounds produced by tools. The magnitude spectrum of the sound is extracted using the Fourier analysis and the band-pass filter is applied to further characterize the data. Statistical functions are also used as input to the nonlinear classifier for the final response. The results prove that the proposed feature extraction method accurately captures the hidden patterns of the sound generated by the tool, unlike the conventional features. Therefore, it is shown that the proposed method can be applied to a sound based automatic diagnosis system.

MRS Pattern Classification Using Fusion Method based on SpPCA and MLP (SpPCA와 MLP에 기반을 둔 응합법칙에 의한 MRS 패턴분류)

  • Song Chang kyu;Lee Dae jong;Jeon Byeong seok;Ryu Jeong woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9C
    • /
    • pp.922-929
    • /
    • 2005
  • In this paper, we propose the MRS p:Ittern classification techniques by the fusion scheme based on the SpPCA and MLP. A conventional PCA teclulique for the dimension reduction has the problem that it can't find a optimal transformation matrix if the property of input data is nonlinear. To overcome this drawback we extract features by the SpPCA technique which use the local patterns rather than whole patterns. In a next classification step, individual classifier based on MLP calculates the similarity of each class for local features. Finally, MRS patterns is classified by the fusion scheme to effectively combine the individual information. As the simulation results to verify the effectiveness, the proposed method showed more improved classification results than conventional methods.

Study on Support Vector Machines Using Mathematical Programming (수리계획법을 이용한 서포트 벡터 기계 방법에 관한 연구)

  • Yoon, Min;Lee, Hak-Bae
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.2
    • /
    • pp.421-434
    • /
    • 2005
  • Machine learning has been extensively studied in recent years as effective tools in pattern classification problem. Although there have been several approaches to machine learning, we focus on the mathematical programming (in particular, multi-objective and goal programming; MOP/GP) approaches in this paper. Among them, Support Vector Machine (SVM) is gaining much popularity recently. In pattern classification problem with two class sets, the idea is to find a maximal margin separating hyperplane which gives the greatest separation between the classes in a high dimensional feature space. However, the idea of maximal margin separation is not quite new: in 1960's the multi-surface method (MSM) was suggested by Mangasarian. In 1980's, linear classifiers using goal programming were developed extensively. This paper proposes a new family of SVM using MOP/GP techniques, and discusses its effectiveness throughout several numerical experiments.

Damage Assessment of Plate Gider Railway Bridge Based on the Probabilistic Neural Network (확률신경망을 이용한 철도 판형교의 손상평가)

  • 조효남;이성칠;강경구;오달수
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.3
    • /
    • pp.229-236
    • /
    • 2003
  • Artificial neural network has been used for damage assessment by many researchers, but there are still some barriers that must be overcome to improve its accuracy and efficiency. The major problems associated with the conventional artificial neural network, especially the Back Propagation Neural Network(BPNN), are on the need of many training patterns and on the ambiguous relationship between neural network architecture and the convergence of solution. Therefore, the number of hidden layers and nodes in one hidden layer would be determined by trial and error. Also, it takes a lot of time to prepare many training patterns and to determine the optimum architecture of neural network. To overcome these drawbacks, the PNN can be used as a pattern classifier. In this paper, the PNN is used numerically to detect damage in a plate girder railway bridge. Also, the comparison between mode shapes and natural frequencies of the structure is investigated to select the appropriate training pattern for the damage detection in the railway bridge.

Human Action Recognition in Still Image Using Weighted Bag-of-Features and Ensemble Decision Trees (가중치 기반 Bag-of-Feature와 앙상블 결정 트리를 이용한 정지 영상에서의 인간 행동 인식)

  • Hong, June-Hyeok;Ko, Byoung-Chul;Nam, Jae-Yeal
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.1
    • /
    • pp.1-9
    • /
    • 2013
  • This paper propose a human action recognition method that uses bag-of-features (BoF) based on CS-LBP (center-symmetric local binary pattern) and a spatial pyramid in addition to the random forest classifier. To construct the BoF, an image divided into dense regular grids and extract from each patch. A code word which is a visual vocabulary, is formed by k-means clustering of a random subset of patches. For enhanced action discrimination, local BoF histogram from three subdivided levels of a spatial pyramid is estimated, and a weighted BoF histogram is generated by concatenating the local histograms. For action classification, a random forest, which is an ensemble of decision trees, is built to model the distribution of each action class. The random forest combined with the weighted BoF histogram is successfully applied to Standford Action 40 including various human action images, and its classification performance is better than that of other methods. Furthermore, the proposed method allows action recognition to be performed in near real-time.

Fault Diagnosis System based on Sound using Feature Extraction Method of Frequency Domain

  • Vununu, Caleb;Kwon, Oh-Heum;Moon, Kwang-Seok;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.4
    • /
    • pp.450-463
    • /
    • 2018
  • Sound based machine fault diagnosis is the process consisting of detecting automatically the damages that affect the machines by analyzing the sounds they produce during their operating time. The collected sounds being inevitably corrupted by random disturbance, the most important part of the diagnosis consists of discovering the hidden elements inside the data that can reveal the faulty patterns. This paper presents a novel feature extraction methodology that combines various digital signal processing and pattern recognition methods for the analysis of the sounds produced by the drills. Using the Fourier analysis, the magnitude spectrum of the sounds are extracted, converted into two-dimensional vectors and uniformly normalized in such a way that they can be represented as 8-bit grayscale images. Histogram equalization is then performed over the obtained images in order to adjust their very poor contrast. The obtained contrast enhanced images will be used as the features of our diagnosis system. Finally, principal component analysis is performed over the image features for reducing their dimensions and a nonlinear classifier is adopted to produce the final response. Unlike the conventional features, the results demonstrate that the proposed feature extraction method manages to capture the hidden health patterns of the sound.

Clustering Technique Using Relevance of Data and Applied Algorithms (데이터와 적용되는 알고리즘의 연관성을 이용한 클러스터링 기법)

  • Han Woo-Yeon;Nam Mi-Young;Rhee PhillKyu
    • The KIPS Transactions:PartB
    • /
    • v.12B no.5 s.101
    • /
    • pp.577-586
    • /
    • 2005
  • Many algorithms have been proposed for (ace recognition that is one of the most successful applications in image processing, pattern recognition and computer vision fields. Research for what kind of attribute of face that make harder or easier recognizing the target is going on recently. In flus paper, we propose method to improve recognition performance using relevance of face data and applied algorithms, because recognition performance of each algorithm according to facial attribute(illumination and expression) is change. In the experiment, we use n-tuple classifier, PCA and Gabor wavelet as recognition algorithm. And we propose three vectorization methods. First of all, we estimate the fitnesses of three recognition algorithms about each cluster after clustering the test data using k-means algorithm then we compose new clusters by integrating clusters that select same algorithm. We estimate similarity about a new cluster of test data and then we recognize the target using the nearest cluster. As a result, we can observe that the recognition performance has improved than the performance by a single algorithm without clustering.

Feature Extraction and Classification of High Dimensional Biomedical Spectral Data (고차원을 갖는 생체 스펙트럼 데이터의 특징추출 및 분류기법)

  • Cho, Jae-Hoon;Park, Jin-Il;Lee, Dae-Jong;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.3
    • /
    • pp.297-303
    • /
    • 2009
  • In this paper, we propose the biomedical spectral pattern classification techniques by the fusion scheme based on the SpPCA and MLP in extended feature space. A conventional PCA technique for the dimension reduction has the problem that it can't find an optimal transformation matrix if the property of input data is nonlinear. To overcome this drawback, we extract features by the SpPCA technique in extended space which use the local patterns rather than whole patterns. In the classification step, individual classifier based on MLP calculates the similarity of each class for local features. Finally, biomedical spectral patterns is classified by the fusion scheme to effectively combine the individual information. As the simulation results to verify the effectiveness, the proposed method showed more improved classification results than conventional methods.