Abstract
Many algorithms have been proposed for (ace recognition that is one of the most successful applications in image processing, pattern recognition and computer vision fields. Research for what kind of attribute of face that make harder or easier recognizing the target is going on recently. In flus paper, we propose method to improve recognition performance using relevance of face data and applied algorithms, because recognition performance of each algorithm according to facial attribute(illumination and expression) is change. In the experiment, we use n-tuple classifier, PCA and Gabor wavelet as recognition algorithm. And we propose three vectorization methods. First of all, we estimate the fitnesses of three recognition algorithms about each cluster after clustering the test data using k-means algorithm then we compose new clusters by integrating clusters that select same algorithm. We estimate similarity about a new cluster of test data and then we recognize the target using the nearest cluster. As a result, we can observe that the recognition performance has improved than the performance by a single algorithm without clustering.
영상 처리와 패턴 인식 그리고 컴퓨터 비젼 분야의 가장 성공적인 응용들 중 하나인 얼굴 인식을 위해 많은 알고리즘이 제안되었고, 최근에는 얼굴의 어떤 속성이 대상을 인식하는 것을 더 쉽거나 어렵게 만드는지에 대한 연구가 진행되고 있다. 본 논문에서는 얼굴의 속성(조명, 표정)에 따라 각각의 알고리즘의 인식 성능이 달라지는 점에 착안해서, 얼굴 데이터와 적용된 알고리즘과의 연관성을 이용하여 인식 성능을 높이는 클러스터링 방법을 제안하였다. 실험에서는 인식 알고리즘으로 n-tuple, PCA 그리고 가보 웨이블릿이 사용되었고, 세 가지 벡터화 방법이 제안되었다. 우선 학습 데이터를 k-means 알고리즘을 이용하여 클러스터링하고 각각의 클러스터에 대한 세 가지 인식 알고리즘의 적합도를 평가한 후, 같은 알고리즘을 선택한 클러스터들을 통합하여 새로운 클러스터를 구성한다. 그리고 테스트 데이터에서 새로운 클러스터에 대한 유사도를 평가하여 가장 가까운 클러스터가 선택한 알고리즘으로 인식을 수행한다. 그 결과 클러스터링 과정을 거치지 않고 단일 알고리즘을 사용하여 인식했을 때보다 인식 성능이 향상된 것을 관찰할 수 있다.