• Title/Summary/Keyword: Pattern classifier

Search Result 383, Processing Time 0.027 seconds

Fault Detection and Diagnosis Simulation for CAV AHU System (정풍량 공조시스템의 고장검출 및 진단 시뮬레이션)

  • Han, Dong-Won;Chang, Young-Soo;Kim, Seo-Young;Kim, Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.10
    • /
    • pp.687-696
    • /
    • 2010
  • In this study, FDD algorithm was developed using the normalized distance method and general pattern classifier method that can be applied to constant air volume air handling unit(CAV AHU) system. The simulation model using TRNSYS and EES was developed in order to obtain characteristic data of CAV AHU system under the normal and the faulty operation. Sensitivity analysis of fault detection was carried out with respect to fault progress. When differential pressure of mixed air filter increased by more than about 105 pascal, FDD algorithm was able to detect the fault. The return air temperature is very important measurement parameter controlling cooling capacity. Therefore, it is important to detect measurement error of the return air temperature. Measurement error of the return air temperature sensor can be detected at below $1.2^{\circ}C$ by FDD algorithm. FDD algorithm developed in this study was found to indicate each failure modes accurately.

Robust PCB Image Alignment using SIFT (잡음과 회전에 강인한 SIFT 기반 PCB 영상 정렬 알고리즘 개발)

  • Kim, Jun-Chul;Cui, Xue-Nan;Park, Eun-Soo;Choi, Hyo-Hoon;Kim, Hak-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.7
    • /
    • pp.695-702
    • /
    • 2010
  • This paper presents an image alignment algorithm for application of AOI (Automatic Optical Inspection) based on SIFT. Since the correspondences result using SIFT descriptor have many wrong points for aligning, this paper modified and classified those points by five measures called the CCFMR (Cascade Classifier for False Matching Reduction) After reduced the false matching, rotation and translation are estimated by point selection method. Experimental results show that the proposed method has fewer fail matching in comparison to commercial software MIL 8.0, and specially, less than twice with the well-controlled environment’s data sets (such as AOI system). The rotation and translation accuracy is robust than MIL in the noise data sets, but the errors are higher than in a rotation variation data sets although that also meaningful result in the practical system. In addition to, the computational time consumed by the proposed method is four times shorter than that by MIL which increases linearly according to noise.

One-class Classification based Fault Classification for Semiconductor Process Cyclic Signal (단일 클래스 분류기법을 이용한 반도체 공정 주기 신호의 이상분류)

  • Cho, Min-Young;Baek, Jun-Geol
    • IE interfaces
    • /
    • v.25 no.2
    • /
    • pp.170-177
    • /
    • 2012
  • Process control is essential to operate the semiconductor process efficiently. This paper consider fault classification of semiconductor based cyclic signal for process control. In general, process signal usually take the different pattern depending on some different cause of fault. If faults can be classified by cause of faults, it could improve the process control through a definite and rapid diagnosis. One of the most important thing is a finding definite diagnosis in fault classification, even-though it is classified several times. This paper proposes the method that one-class classifier classify fault causes as each classes. Hotelling T2 chart, kNNDD(k-Nearest Neighbor Data Description), Distance based Novelty Detection are used to perform the one-class classifier. PCA(Principal Component Analysis) is also used to reduce the data dimension because the length of process signal is too long generally. In experiment, it generates the data based real signal patterns from semiconductor process. The objective of this experiment is to compare between the proposed method and SVM(Support Vector Machine). Most of the experiments' results show that proposed method using Distance based Novelty Detection has a good performance in classification and diagnosis problems.

Design of a binary decision tree using genetic algorithm for recognition of the defect patterns of cold mill strip (유전 알고리듬을 이용한 이진 트리 분류기의 설계와 냉연 흠 분류에의 적용)

  • Kim, Kyoung-Min;Lee, Byung-Jin;Lyou, Kyoung;Park, Gwi-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.1
    • /
    • pp.98-103
    • /
    • 2000
  • This paper suggests a method to recognize the various defect patterns of a cold mill strip using a binary decision tree automatically constructed by a genetic algorithm(GA). In classifying complex patterns with high similarity like the defect patterns of a cold mill stirp, the selection of an optimal feature set and an appropriate recognizer is important to achieve high recognition rate. In this paper a GA is used to select a subset of the suitable features at each node in the binary decision tree. The feature subset with maximum fitness is chosen and the patterns are classified into two classes using a linear decision function. This process is repeated at each node until all the patterns are classified into individual classes. In this way, the classifier using the binary decision tree is constructed automatically. After constructing the binary decision tree, the final recognizer is accomplished by having neural network learning sits of standard patterns at each node. In this paper, the classifier using the binary decision tree is applied to the recognition of defect patterns of a cold mill strip, and the experimental results are given to demonstrate the usefulness of the proposed scheme.

  • PDF

Classifying Instantaneous Cognitive States from fMRI using Discriminant based Feature Selection and Adaboost

  • Vu, Tien Duong;Yang, Hyung-Jeong;Do, Luu Ngoc;Thieu, Thao Nguyen
    • Smart Media Journal
    • /
    • v.5 no.1
    • /
    • pp.30-37
    • /
    • 2016
  • In recent decades, the study of human brain function has dramatically increased thanks to the advent of Functional Magnetic Resonance Imaging. This is a powerful tool which provides a deep view of the activities of the brain. From fMRI data, the neuroscientists analyze which parts of the brain have responsibility for a particular action and finding the common pattern representing each state involved in these tasks. This is one of the most challenges in neuroscience area because of noisy, sparsity of data as well as the differences of anatomical brain structure of each person. In this paper, we propose the use of appropriate discriminant methods, such as Fisher Discriminant Ratio and hypothesis testing, together with strong boosting ability of Adaboost classifier. We prove that discriminant methods are effective in classifying cognitive states. The experiment results show significant better accuracy than previous works. We also show that it is possible to train a successful classifier without prior anatomical knowledge and use only a small number of features.

Using Estimated Probability from Support Vector Machines for Credit Rating in IT Industry

  • Hong, Tae-Ho;Shin, Taek-Soo
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.11a
    • /
    • pp.509-515
    • /
    • 2005
  • Recently, support vector machines (SVMs) are being recognized as competitive tools as compared with other data mining techniques for solving pattern recognition or classification decision problems. Furthermore, many researches, in particular, have proved it more powerful than traditional artificial neural networks (ANNs)(Amendolia et al., 2003; Huang et al., 2004, Huang et al., 2005; Tay and Cao, 2001; Min and Lee, 2005; Shin et al, 2005; Kim, 2003). The classification decision, such as a binary or multi-class decision problem, used by any classifier, i.e. data mining techniques is cost-sensitive. Therefore, it is necessary to convert the output of the classifier into well-calibrated posterior probabilities. However, SVMs basically do not provide such probabilities. So it required to use any method to create probabilities (Platt, 1999; Drish, 2001). This study applies a method to estimate the probability of outputs of SVM to bankruptcy prediction and then suggests credit scoring methods using the estimated probability for bank's loan decision making.

  • PDF

Learning Directional LBP Features and Discriminative Feature Regions for Facial Expression Recognition (얼굴 표정 인식을 위한 방향성 LBP 특징과 분별 영역 학습)

  • Kang, Hyunwoo;Lim, Kil-Taek;Won, Chulho
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.5
    • /
    • pp.748-757
    • /
    • 2017
  • In order to recognize the facial expressions, good features that can express the facial expressions are essential. It is also essential to find the characteristic areas where facial expressions appear discriminatively. In this study, we propose a directional LBP feature for facial expression recognition and a method of finding directional LBP operation and feature region for facial expression classification. The proposed directional LBP features to characterize facial fine micro-patterns are defined by LBP operation factors (direction and size of operation mask) and feature regions through AdaBoost learning. The facial expression classifier is implemented as a SVM classifier based on learned discriminant region and directional LBP operation factors. In order to verify the validity of the proposed method, facial expression recognition performance was measured in terms of accuracy, sensitivity, and specificity. Experimental results show that the proposed directional LBP and its learning method are useful for facial expression recognition.

Development of a Fault Detection and Diagnosis Algorithm Using Fault Mode Simulation for a Centrifugal Chiller (고장모사 시뮬레이션을 이용한 터보냉동기의 고장검출 및 진단 알고리즘 개발)

  • Han, Dong-Won;Chang, Young-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.10
    • /
    • pp.669-678
    • /
    • 2008
  • When operating a complex facility, Fault Detection and Diagnosis (FDD) system is beneficial in equipment management by providing the operator with tools which can help find out a failure of the system. In this research, FDD algorithm was developed using the general pattern classifier method that can be applied to centrifugal chiller system. The simulation model for a centrifugal chiller system was developed in order to obtain characteristic data of turbo chiller system under normal and faulty operation. We tested FDD algorithm of a centrifugal chiller using data from simulation model at full load performance and 60% part load performance. In this research, we presented fault detection method using a normalized distance. Sensitivity analysis of fault detection was carried out with respect to fault progress. FDD algorithm developed in this study was found to indicate each failure modes accurately.

A Realtime Road Weather Recognition Method Using Support Vector Machine (Support Vector Machine을 이용한 실시간 도로기상 검지 방법)

  • Seo, Min-ho;Youk, Dong-bin;Park, Sae-rom;Jun, Jin-ho;Park, Jung-hoon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.1025-1032
    • /
    • 2020
  • In this paper, we propose a method to classify road weather conditions into rain, fog, and sun using a SVM (Support Vector Machine) classifier after extracting weather features from images acquired in real time using an optical sensor installed on a roadside post. A multi-dimensional weather feature vector consisting of factors such as image sharpeness, image entropy, Michelson contrast, MSCN (Mean Subtraction and Contrast Normalization), dark channel prior, image colorfulness, and local binary pattern as global features of weather-related images was extracted from road images, and then a road weather classifier was created by performing machine learning on 700 sun images, 2,000 rain images, and 1,000 fog images. Finally, the classification performance was tested for 140 sun images, 510 rain images, and 240 fog images. Overall classification performance is assessed to be applicable in real road services and can be enhanced further with optimization along with year-round data collection and training.

Evolutionary Neural Network based on Quantum Elephant Herding Algorithm for Modulation Recognition in Impulse Noise

  • Gao, Hongyuan;Wang, Shihao;Su, Yumeng;Sun, Helin;Zhang, Zhiwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2356-2376
    • /
    • 2021
  • In this paper, we proposed a novel modulation recognition method based on quantum elephant herding algorithm (QEHA) evolving neural network under impulse noise environment. We use the adaptive weight myriad filter to preprocess the received digital modulation signals which passing through the impulsive noise channel, and then the instantaneous characteristics and high order cumulant features of digital modulation signals are extracted as classification feature set, finally, the BP neural network (BPNN) model as a classifier for automatic digital modulation recognition. Besides, based on the elephant herding optimization (EHO) algorithm and quantum computing mechanism, we design a quantum elephant herding algorithm (QEHA) to optimize the initial thresholds and weights of the BPNN, which solves the problem that traditional BPNN is easy into local minimum values and poor robustness. The experimental results prove that the adaptive weight myriad filter we used can remove the impulsive noise effectively, and the proposed QEHA-BPNN classifier has better recognition performance than other conventional pattern recognition classifiers. Compared with other global optimization algorithms, the QEHA designed in this paper has a faster convergence speed and higher convergence accuracy. Furthermore, the effect of symbol shape has been considered, which can satisfy the need for engineering.