• Title/Summary/Keyword: Pattern Research

Search Result 10,178, Processing Time 0.058 seconds

Derivation of Stem Taper Equations and a Stem Volume Table for Quercus acuta in a Warm Temperate Region (난대지역 붉가시나무의 수간곡선식 도출 및 수간재적표 작성)

  • Suyoung Jung;Kwangsoo Lee;Hyunsoo Kim; Joonhyung Park;Jaeyeop Kim;Chunhee Park;Yeongmo Son
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.4
    • /
    • pp.417-425
    • /
    • 2023
  • The aim of this study was to derive stem taper equations for Quercus acuta, one of main evergreen broad-leaved tree species found in warm temperate regions, and to prepare a stem volume table using those stem taper equations. A total of 688 individual trees were used in the analysis, which were collected from Jeonnam-do, Gyeongnam-do, and Jeju-do. The stem taper models applied to derive the stem curve pattern were the Max and Burkhart, Kozak, and Lee models. Among the three stem taper models, the best explanation of the stem curve shape of Q. acuta was found to be given by the Kozak model, which showed a fitness index of 0.9583, bias of 0.0352, percentage of estimated standard error of 1.1439, and mean absolute deviation of 0.6751. Thus, the stem taper of Q. acuta was estimated using the Kozak model. Moreover,thestemvolumecalculationwasperforme d by applying the Smalian formula to the diameter and height of each stem interval. In addition, an analysis of variance (ANOVA) was conducted to compare the two existing Q. acuta stem volume tables (2007 and 2010) and the newly created stem volume table (2023). This analysis revealed that the stem volume table constructed in the Wando region in 2007 included about twice as much as the stem volume tables constructed in 2010 and 2023. The stem volume table (2023) developed in this study is not only based on the regional collection range and number of utilized trees but also on a sound scientific basis. Therefore, it can be used at the national level as an official stem volume table for Q. acuta.

Future Changes in Global Terrestrial Carbon Cycle under RCP Scenarios (RCP 시나리오에 따른 미래 전지구 육상탄소순환 변화 전망)

  • Lee, Cheol;Boo, Kyung-On;Hong, Jinkyu;Seong, Hyunmin;Heo, Tae-kyung;Seol, Kyung-Hee;Lee, Johan;Cho, ChunHo
    • Atmosphere
    • /
    • v.24 no.3
    • /
    • pp.303-315
    • /
    • 2014
  • Terrestrial ecosystem plays the important role as carbon sink in the global carbon cycle. Understanding of interactions of terrestrial carbon cycle with climate is important for better prediction of future climate change. In this paper, terrestrial carbon cycle is investigated by Hadley Centre Global Environmental Model, version 2, Carbon Cycle (HadGEM2-CC) that considers vegetation dynamics and an interactive carbon cycle with climate. The simulation for future projection is based on the three (8.5/4.5/2.6) representative concentration pathways (RCPs) from 2006 to 2100 and compared with historical land carbon uptake from 1979 to 2005. Projected changes in ecological features such as production, respiration, net ecosystem exchange and climate condition show similar pattern in three RCPs, while the response amplitude in each RCPs are different. For all RCP scenarios, temperature and precipitation increase with rising of the atmospheric $CO_2$. Such climate conditions are favorable for vegetation growth and extension, causing future increase of terrestrial carbon uptakes in all RCPs. At the end of 21st century, the global average of gross and net primary productions and respiration increase in all RCPs and terrestrial ecosystem remains as carbon sink. This enhancement of land $CO_2$ uptake is attributed by the vegetated area expansion, increasing LAI, and early onset of growing season. After mid-21st century, temperature rising leads to excessive increase of soil respiration than net primary production and thus the terrestrial carbon uptake begins to fall since that time. Regionally the NEE average value of East-Asia ($90^{\circ}E-140^{\circ}E$, $20^{\circ}N{\sim}60^{\circ}N$) area is bigger than that of the same latitude band. In the end-$21^{st}$ the NEE mean values in East-Asia area are $-2.09PgC\;yr^{-1}$, $-1.12PgC\;yr^{-1}$, $-0.47PgC\;yr^{-1}$ and zonal mean NEEs of the same latitude region are $-1.12PgC\;yr^{-1}$, $-0.55PgC\;yr^{-1}$, $-0.17PgC\;yr^{-1}$ for RCP 8.5, 4.5, 2.6.

Structural features and Diffusion Patterns of Gartner Hype Cycle for Artificial Intelligence using Social Network analysis (인공지능 기술에 관한 가트너 하이프사이클의 네트워크 집단구조 특성 및 확산패턴에 관한 연구)

  • Shin, Sunah;Kang, Juyoung
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.107-129
    • /
    • 2022
  • It is important to preempt new technology because the technology competition is getting much tougher. Stakeholders conduct exploration activities continuously for new technology preoccupancy at the right time. Gartner's Hype Cycle has significant implications for stakeholders. The Hype Cycle is a expectation graph for new technologies which is combining the technology life cycle (S-curve) with the Hype Level. Stakeholders such as R&D investor, CTO(Chef of Technology Officer) and technical personnel are very interested in Gartner's Hype Cycle for new technologies. Because high expectation for new technologies can bring opportunities to maintain investment by securing the legitimacy of R&D investment. However, contrary to the high interest of the industry, the preceding researches faced with limitations aspect of empirical method and source data(news, academic papers, search traffic, patent etc.). In this study, we focused on two research questions. The first research question was 'Is there a difference in the characteristics of the network structure at each stage of the hype cycle?'. To confirm the first research question, the structural characteristics of each stage were confirmed through the component cohesion size. The second research question is 'Is there a pattern of diffusion at each stage of the hype cycle?'. This research question was to be solved through centralization index and network density. The centralization index is a concept of variance, and a higher centralization index means that a small number of nodes are centered in the network. Concentration of a small number of nodes means a star network structure. In the network structure, the star network structure is a centralized structure and shows better diffusion performance than a decentralized network (circle structure). Because the nodes which are the center of information transfer can judge useful information and deliver it to other nodes the fastest. So we confirmed the out-degree centralization index and in-degree centralization index for each stage. For this purpose, we confirmed the structural features of the community and the expectation diffusion patterns using Social Network Serice(SNS) data in 'Gartner Hype Cycle for Artificial Intelligence, 2021'. Twitter data for 30 technologies (excluding four technologies) listed in 'Gartner Hype Cycle for Artificial Intelligence, 2021' were analyzed. Analysis was performed using R program (4.1.1 ver) and Cyram Netminer. From October 31, 2021 to November 9, 2021, 6,766 tweets were searched through the Twitter API, and converting the relationship user's tweet(Source) and user's retweets (Target). As a result, 4,124 edgelists were analyzed. As a reult of the study, we confirmed the structural features and diffusion patterns through analyze the component cohesion size and degree centralization and density. Through this study, we confirmed that the groups of each stage increased number of components as time passed and the density decreased. Also 'Innovation Trigger' which is a group interested in new technologies as a early adopter in the innovation diffusion theory had high out-degree centralization index and the others had higher in-degree centralization index than out-degree. It can be inferred that 'Innovation Trigger' group has the biggest influence, and the diffusion will gradually slow down from the subsequent groups. In this study, network analysis was conducted using social network service data unlike methods of the precedent researches. This is significant in that it provided an idea to expand the method of analysis when analyzing Gartner's hype cycle in the future. In addition, the fact that the innovation diffusion theory was applied to the Gartner's hype cycle's stage in artificial intelligence can be evaluated positively because the Gartner hype cycle has been repeatedly discussed as a theoretical weakness. Also it is expected that this study will provide a new perspective on decision-making on technology investment to stakeholdes.

DEVELOPMENT OF STATEWIDE TRUCK TRAFFIC FORECASTING METHOD BY USING LIMITED O-D SURVEY DATA (한정된 O-D조사자료를 이용한 주 전체의 트럭교통예측방법 개발)

  • 박만배
    • Proceedings of the KOR-KST Conference
    • /
    • 1995.02a
    • /
    • pp.101-113
    • /
    • 1995
  • The objective of this research is to test the feasibility of developing a statewide truck traffic forecasting methodology for Wisconsin by using Origin-Destination surveys, traffic counts, classification counts, and other data that are routinely collected by the Wisconsin Department of Transportation (WisDOT). Development of a feasible model will permit estimation of future truck traffic for every major link in the network. This will provide the basis for improved estimation of future pavement deterioration. Pavement damage rises exponentially as axle weight increases, and trucks are responsible for most of the traffic-induced damage to pavement. Consequently, forecasts of truck traffic are critical to pavement management systems. The pavement Management Decision Supporting System (PMDSS) prepared by WisDOT in May 1990 combines pavement inventory and performance data with a knowledge base consisting of rules for evaluation, problem identification and rehabilitation recommendation. Without a r.easonable truck traffic forecasting methodology, PMDSS is not able to project pavement performance trends in order to make assessment and recommendations in the future years. However, none of WisDOT's existing forecasting methodologies has been designed specifically for predicting truck movements on a statewide highway network. For this research, the Origin-Destination survey data avaiiable from WisDOT, including two stateline areas, one county, and five cities, are analyzed and the zone-to'||'&'||'not;zone truck trip tables are developed. The resulting Origin-Destination Trip Length Frequency (00 TLF) distributions by trip type are applied to the Gravity Model (GM) for comparison with comparable TLFs from the GM. The gravity model is calibrated to obtain friction factor curves for the three trip types, Internal-Internal (I-I), Internal-External (I-E), and External-External (E-E). ~oth "macro-scale" calibration and "micro-scale" calibration are performed. The comparison of the statewide GM TLF with the 00 TLF for the macro-scale calibration does not provide suitable results because the available 00 survey data do not represent an unbiased sample of statewide truck trips. For the "micro-scale" calibration, "partial" GM trip tables that correspond to the 00 survey trip tables are extracted from the full statewide GM trip table. These "partial" GM trip tables are then merged and a partial GM TLF is created. The GM friction factor curves are adjusted until the partial GM TLF matches the 00 TLF. Three friction factor curves, one for each trip type, resulting from the micro-scale calibration produce a reasonable GM truck trip model. A key methodological issue for GM. calibration involves the use of multiple friction factor curves versus a single friction factor curve for each trip type in order to estimate truck trips with reasonable accuracy. A single friction factor curve for each of the three trip types was found to reproduce the 00 TLFs from the calibration data base. Given the very limited trip generation data available for this research, additional refinement of the gravity model using multiple mction factor curves for each trip type was not warranted. In the traditional urban transportation planning studies, the zonal trip productions and attractions and region-wide OD TLFs are available. However, for this research, the information available for the development .of the GM model is limited to Ground Counts (GC) and a limited set ofOD TLFs. The GM is calibrated using the limited OD data, but the OD data are not adequate to obtain good estimates of truck trip productions and attractions .. Consequently, zonal productions and attractions are estimated using zonal population as a first approximation. Then, Selected Link based (SELINK) analyses are used to adjust the productions and attractions and possibly recalibrate the GM. The SELINK adjustment process involves identifying the origins and destinations of all truck trips that are assigned to a specified "selected link" as the result of a standard traffic assignment. A link adjustment factor is computed as the ratio of the actual volume for the link (ground count) to the total assigned volume. This link adjustment factor is then applied to all of the origin and destination zones of the trips using that "selected link". Selected link based analyses are conducted by using both 16 selected links and 32 selected links. The result of SELINK analysis by u~ing 32 selected links provides the least %RMSE in the screenline volume analysis. In addition, the stability of the GM truck estimating model is preserved by using 32 selected links with three SELINK adjustments, that is, the GM remains calibrated despite substantial changes in the input productions and attractions. The coverage of zones provided by 32 selected links is satisfactory. Increasing the number of repetitions beyond four is not reasonable because the stability of GM model in reproducing the OD TLF reaches its limits. The total volume of truck traffic captured by 32 selected links is 107% of total trip productions. But more importantly, ~ELINK adjustment factors for all of the zones can be computed. Evaluation of the travel demand model resulting from the SELINK adjustments is conducted by using screenline volume analysis, functional class and route specific volume analysis, area specific volume analysis, production and attraction analysis, and Vehicle Miles of Travel (VMT) analysis. Screenline volume analysis by using four screenlines with 28 check points are used for evaluation of the adequacy of the overall model. The total trucks crossing the screenlines are compared to the ground count totals. L V/GC ratios of 0.958 by using 32 selected links and 1.001 by using 16 selected links are obtained. The %RM:SE for the four screenlines is inversely proportional to the average ground count totals by screenline .. The magnitude of %RM:SE for the four screenlines resulting from the fourth and last GM run by using 32 and 16 selected links is 22% and 31 % respectively. These results are similar to the overall %RMSE achieved for the 32 and 16 selected links themselves of 19% and 33% respectively. This implies that the SELINICanalysis results are reasonable for all sections of the state.Functional class and route specific volume analysis is possible by using the available 154 classification count check points. The truck traffic crossing the Interstate highways (ISH) with 37 check points, the US highways (USH) with 50 check points, and the State highways (STH) with 67 check points is compared to the actual ground count totals. The magnitude of the overall link volume to ground count ratio by route does not provide any specific pattern of over or underestimate. However, the %R11SE for the ISH shows the least value while that for the STH shows the largest value. This pattern is consistent with the screenline analysis and the overall relationship between %RMSE and ground count volume groups. Area specific volume analysis provides another broad statewide measure of the performance of the overall model. The truck traffic in the North area with 26 check points, the West area with 36 check points, the East area with 29 check points, and the South area with 64 check points are compared to the actual ground count totals. The four areas show similar results. No specific patterns in the L V/GC ratio by area are found. In addition, the %RMSE is computed for each of the four areas. The %RMSEs for the North, West, East, and South areas are 92%, 49%, 27%, and 35% respectively, whereas, the average ground counts are 481, 1383, 1532, and 3154 respectively. As for the screenline and volume range analyses, the %RMSE is inversely related to average link volume. 'The SELINK adjustments of productions and attractions resulted in a very substantial reduction in the total in-state zonal productions and attractions. The initial in-state zonal trip generation model can now be revised with a new trip production's trip rate (total adjusted productions/total population) and a new trip attraction's trip rate. Revised zonal production and attraction adjustment factors can then be developed that only reflect the impact of the SELINK adjustments that cause mcreases or , decreases from the revised zonal estimate of productions and attractions. Analysis of the revised production adjustment factors is conducted by plotting the factors on the state map. The east area of the state including the counties of Brown, Outagamie, Shawano, Wmnebago, Fond du Lac, Marathon shows comparatively large values of the revised adjustment factors. Overall, both small and large values of the revised adjustment factors are scattered around Wisconsin. This suggests that more independent variables beyond just 226; population are needed for the development of the heavy truck trip generation model. More independent variables including zonal employment data (office employees and manufacturing employees) by industry type, zonal private trucks 226; owned and zonal income data which are not available currently should be considered. A plot of frequency distribution of the in-state zones as a function of the revised production and attraction adjustment factors shows the overall " adjustment resulting from the SELINK analysis process. Overall, the revised SELINK adjustments show that the productions for many zones are reduced by, a factor of 0.5 to 0.8 while the productions for ~ relatively few zones are increased by factors from 1.1 to 4 with most of the factors in the 3.0 range. No obvious explanation for the frequency distribution could be found. The revised SELINK adjustments overall appear to be reasonable. The heavy truck VMT analysis is conducted by comparing the 1990 heavy truck VMT that is forecasted by the GM truck forecasting model, 2.975 billions, with the WisDOT computed data. This gives an estimate that is 18.3% less than the WisDOT computation of 3.642 billions of VMT. The WisDOT estimates are based on the sampling the link volumes for USH, 8TH, and CTH. This implies potential error in sampling the average link volume. The WisDOT estimate of heavy truck VMT cannot be tabulated by the three trip types, I-I, I-E ('||'&'||'pound;-I), and E-E. In contrast, the GM forecasting model shows that the proportion ofE-E VMT out of total VMT is 21.24%. In addition, tabulation of heavy truck VMT by route functional class shows that the proportion of truck traffic traversing the freeways and expressways is 76.5%. Only 14.1% of total freeway truck traffic is I-I trips, while 80% of total collector truck traffic is I-I trips. This implies that freeways are traversed mainly by I-E and E-E truck traffic while collectors are used mainly by I-I truck traffic. Other tabulations such as average heavy truck speed by trip type, average travel distance by trip type and the VMT distribution by trip type, route functional class and travel speed are useful information for highway planners to understand the characteristics of statewide heavy truck trip patternS. Heavy truck volumes for the target year 2010 are forecasted by using the GM truck forecasting model. Four scenarios are used. Fo~ better forecasting, ground count- based segment adjustment factors are developed and applied. ISH 90 '||'&'||' 94 and USH 41 are used as example routes. The forecasting results by using the ground count-based segment adjustment factors are satisfactory for long range planning purposes, but additional ground counts would be useful for USH 41. Sensitivity analysis provides estimates of the impacts of the alternative growth rates including information about changes in the trip types using key routes. The network'||'&'||'not;based GMcan easily model scenarios with different rates of growth in rural versus . . urban areas, small versus large cities, and in-state zones versus external stations. cities, and in-state zones versus external stations.

  • PDF

The Variation of the Dissolved Inorganic Nutrients in the Costal Area of Gunsan, Yellow Sea from 2001 to 2010 (서해 군산 연안의 2001년부터 2010년까지의 용존성무기영양염류의 변동)

  • Heo, Seung;Kweon, Jung-Ro;Park, Jong-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.4
    • /
    • pp.357-365
    • /
    • 2011
  • The variation of the dissolved inorganic nutrients were investigated four times per year in the costal area of Gunsan, Yellow Sea from 2001 to 2010. Water samples were collected at 10 stations and phsico-chemical parameters were analyzed including water temperature, salinity, suspended solids, dissolved oxygen, chemical oxygen demand, chlorophyll a and dissolved inorganic nutrients. The average of dissolved inorganic nitrogen(DIN) for ten years at Gunsan area showed similar concentration between surface and bottom. The average of DIN at surface was 0.421mg/L (0.198~0.846mg/L) and bottom was 0.344mg/L(0.148~0.717mg/L). The highest value of annual average of DIN at surface was 0.846mg/L in 2002 and the lowest value was 0.198mg/L in 2010. The percentage of ammonia, nitrite and nitrate for the average DIN of 10 years showed 27%, 3% and 70% which showed most of DIN was nitrate. Dissolved inorganic phosphate(DIP) for ten years at Gunsan area showed similar concentration between surface and bottom and DIP was decreasing from 2003 to 2010. The average of DIP of 10 years was 0.024mg/L and annual average 0.021mg/L in 2008, 0.007mg/L in 2009 and 0.008mg/L in 2010 which showed decreasing pattern from 2007 to 2010. The average of DIN/DIP ratio from 2002 to 2010 was 6.0(3.2~10.1) at surface and 4.6(2.6~7.0) at bottom. The average value of dissolved inorganic silicate from 2004 to 2010 showed 0.372mg/L at surface layer and 0.352mg/L at bottom layer and was on decreased from 2006 to 2010. The Spearman's correlation analysis was carried out to knowrelation among the salinity and dissolved inorganic nutrients at the surface and bottom layer. The correlation factor of DIN was -0.72, DIP was -0.46 and dissolved inorganic silicate was -0.63 at surface layer and DIN was -0.70, DIP was -0.44 and dissolved inorganic silicate was -0.57 at bottom layer. The dissolved inorganic nutrients at the nearshore of Gunsan was affected from the freshwater discharge of Geum river. Especially, a lot of DIN flowed into the nearshore of Gunsan from Guem river. The concentration of dissolved inorganic nutrients at Gunsan showed high at station 1, 2 and 3 and there was a little concentration differences according to the cruise time. The concentration of dissolved inorganic nutrients showed high value at the station 1, 2, 3 which exist nearshore of Gunsan city and it means these stations mainly affected by Geum river and Gunsan city. The annual average of dissolved inorganic nutrients showed gradually decreased from 2003 to 2010 and we need more research on this conditions.

Spatial effect on the diffusion of discount stores (대형할인점 확산에 대한 공간적 영향)

  • Joo, Young-Jin;Kim, Mi-Ae
    • Journal of Distribution Research
    • /
    • v.15 no.4
    • /
    • pp.61-85
    • /
    • 2010
  • Introduction: Diffusion is process by which an innovation is communicated through certain channel overtime among the members of a social system(Rogers 1983). Bass(1969) suggested the Bass model describing diffusion process. The Bass model assumes potential adopters of innovation are influenced by mass-media and word-of-mouth from communication with previous adopters. Various expansions of the Bass model have been conducted. Some of them proposed a third factor affecting diffusion. Others proposed multinational diffusion model and it stressed interactive effect on diffusion among several countries. We add a spatial factor in the Bass model as a third communication factor. Because of situation where we can not control the interaction between markets, we need to consider that diffusion within certain market can be influenced by diffusion in contiguous market. The process that certain type of retail extends is a result that particular market can be described by the retail life cycle. Diffusion of retail has pattern following three phases of spatial diffusion: adoption of innovation happens in near the diffusion center first, spreads to the vicinity of the diffusing center and then adoption of innovation is completed in peripheral areas in saturation stage. So we expect spatial effect to be important to describe diffusion of domestic discount store. We define a spatial diffusion model using multinational diffusion model and apply it to the diffusion of discount store. Modeling: In this paper, we define a spatial diffusion model and apply it to the diffusion of discount store. To define a spatial diffusion model, we expand learning model(Kumar and Krishnan 2002) and separate diffusion process in diffusion center(market A) from diffusion process in the vicinity of the diffusing center(market B). The proposed spatial diffusion model is shown in equation (1a) and (1b). Equation (1a) is the diffusion process in diffusion center and equation (1b) is one in the vicinity of the diffusing center. $$\array{{S_{i,t}=(p_i+q_i{\frac{Y_{i,t-1}}{m_i}})(m_i-Y_{i,t-1})\;i{\in}\{1,{\cdots},I\}\;(1a)}\\{S_{j,t}=(p_j+q_j{\frac{Y_{j,t-1}}{m_i}}+{\sum\limits_{i=1}^I}{\gamma}_{ij}{\frac{Y_{i,t-1}}{m_i}})(m_j-Y_{j,t-1})\;i{\in}\{1,{\cdots},I\},\;j{\in}\{I+1,{\cdots},I+J\}\;(1b)}}$$ We rise two research questions. (1) The proposed spatial diffusion model is more effective than the Bass model to describe the diffusion of discount stores. (2) The more similar retail environment of diffusing center with that of the vicinity of the contiguous market is, the larger spatial effect of diffusing center on diffusion of the vicinity of the contiguous market is. To examine above two questions, we adopt the Bass model to estimate diffusion of discount store first. Next spatial diffusion model where spatial factor is added to the Bass model is used to estimate it. Finally by comparing Bass model with spatial diffusion model, we try to find out which model describes diffusion of discount store better. In addition, we investigate the relationship between similarity of retail environment(conceptual distance) and spatial factor impact with correlation analysis. Result and Implication: We suggest spatial diffusion model to describe diffusion of discount stores. To examine the proposed spatial diffusion model, 347 domestic discount stores are used and we divide nation into 5 districts, Seoul-Gyeongin(SG), Busan-Gyeongnam(BG), Daegu-Gyeongbuk(DG), Gwan- gju-Jeonla(GJ), Daejeon-Chungcheong(DC), and the result is shown

    . In a result of the Bass model(I), the estimates of innovation coefficient(p) and imitation coefficient(q) are 0.017 and 0.323 respectively. While the estimate of market potential is 384. A result of the Bass model(II) for each district shows the estimates of innovation coefficient(p) in SG is 0.019 and the lowest among 5 areas. This is because SG is the diffusion center. The estimates of imitation coefficient(q) in BG is 0.353 and the highest. The imitation coefficient in the vicinity of the diffusing center such as BG is higher than that in the diffusing center because much information flows through various paths more as diffusion is progressing. A result of the Bass model(II) shows the estimates of innovation coefficient(p) in SG is 0.019 and the lowest among 5 areas. This is because SG is the diffusion center. The estimates of imitation coefficient(q) in BG is 0.353 and the highest. The imitation coefficient in the vicinity of the diffusing center such as BG is higher than that in the diffusing center because much information flows through various paths more as diffusion is progressing. In a result of spatial diffusion model(IV), we can notice the changes between coefficients of the bass model and those of the spatial diffusion model. Except for GJ, the estimates of innovation and imitation coefficients in Model IV are lower than those in Model II. The changes of innovation and imitation coefficients are reflected to spatial coefficient(${\gamma}$). From spatial coefficient(${\gamma}$) we can infer that when the diffusion in the vicinity of the diffusing center occurs, the diffusion is influenced by one in the diffusing center. The difference between the Bass model(II) and the spatial diffusion model(IV) is statistically significant with the ${\chi}^2$-distributed likelihood ratio statistic is 16.598(p=0.0023). Which implies that the spatial diffusion model is more effective than the Bass model to describe diffusion of discount stores. So the research question (1) is supported. In addition, we found that there are statistically significant relationship between similarity of retail environment and spatial effect by using correlation analysis. So the research question (2) is also supported.

  • PDF
  • A Methodology of Customer Churn Prediction based on Two-Dimensional Loyalty Segmentation (이차원 고객충성도 세그먼트 기반의 고객이탈예측 방법론)

    • Kim, Hyung Su;Hong, Seung Woo
      • Journal of Intelligence and Information Systems
      • /
      • v.26 no.4
      • /
      • pp.111-126
      • /
      • 2020
    • Most industries have recently become aware of the importance of customer lifetime value as they are exposed to a competitive environment. As a result, preventing customers from churn is becoming a more important business issue than securing new customers. This is because maintaining churn customers is far more economical than securing new customers, and in fact, the acquisition cost of new customers is known to be five to six times higher than the maintenance cost of churn customers. Also, Companies that effectively prevent customer churn and improve customer retention rates are known to have a positive effect on not only increasing the company's profitability but also improving its brand image by improving customer satisfaction. Predicting customer churn, which had been conducted as a sub-research area for CRM, has recently become more important as a big data-based performance marketing theme due to the development of business machine learning technology. Until now, research on customer churn prediction has been carried out actively in such sectors as the mobile telecommunication industry, the financial industry, the distribution industry, and the game industry, which are highly competitive and urgent to manage churn. In addition, These churn prediction studies were focused on improving the performance of the churn prediction model itself, such as simply comparing the performance of various models, exploring features that are effective in forecasting departures, or developing new ensemble techniques, and were limited in terms of practical utilization because most studies considered the entire customer group as a group and developed a predictive model. As such, the main purpose of the existing related research was to improve the performance of the predictive model itself, and there was a relatively lack of research to improve the overall customer churn prediction process. In fact, customers in the business have different behavior characteristics due to heterogeneous transaction patterns, and the resulting churn rate is different, so it is unreasonable to assume the entire customer as a single customer group. Therefore, it is desirable to segment customers according to customer classification criteria, such as loyalty, and to operate an appropriate churn prediction model individually, in order to carry out effective customer churn predictions in heterogeneous industries. Of course, in some studies, there are studies in which customers are subdivided using clustering techniques and applied a churn prediction model for individual customer groups. Although this process of predicting churn can produce better predictions than a single predict model for the entire customer population, there is still room for improvement in that clustering is a mechanical, exploratory grouping technique that calculates distances based on inputs and does not reflect the strategic intent of an entity such as loyalties. This study proposes a segment-based customer departure prediction process (CCP/2DL: Customer Churn Prediction based on Two-Dimensional Loyalty segmentation) based on two-dimensional customer loyalty, assuming that successful customer churn management can be better done through improvements in the overall process than through the performance of the model itself. CCP/2DL is a series of churn prediction processes that segment two-way, quantitative and qualitative loyalty-based customer, conduct secondary grouping of customer segments according to churn patterns, and then independently apply heterogeneous churn prediction models for each churn pattern group. Performance comparisons were performed with the most commonly applied the General churn prediction process and the Clustering-based churn prediction process to assess the relative excellence of the proposed churn prediction process. The General churn prediction process used in this study refers to the process of predicting a single group of customers simply intended to be predicted as a machine learning model, using the most commonly used churn predicting method. And the Clustering-based churn prediction process is a method of first using clustering techniques to segment customers and implement a churn prediction model for each individual group. In cooperation with a global NGO, the proposed CCP/2DL performance showed better performance than other methodologies for predicting churn. This churn prediction process is not only effective in predicting churn, but can also be a strategic basis for obtaining a variety of customer observations and carrying out other related performance marketing activities.

    Dismantling and Restoration of the Celadon Stool Treasure with an Openwork Ring Design (보물 청자 투각고리문 의자의 해체 및 복원)

    • KWON, Ohyoung;LEE, Sunmyung;LEE, Jangjon;PARK, Younghwan
      • Korean Journal of Heritage: History & Science
      • /
      • v.55 no.2
      • /
      • pp.200-211
      • /
      • 2022
    • The celadon stools with an openwork ring design which consist of four items as one collection were excavated from Gaeseong, Gyeonggi-do Province. The celadon stools were designated and managed as treasures due to their high arthistorical value in the form of demonstrating the excellence of celadon manufacturing techniques and the fanciful lifestyles during the Goryeo Dynasty. However, one of the items, which appeared to have been repaired and restored in the past, suffered a decline in aesthetic value due to the aging of the treatment materials and the lack of skill on the part of the conservator, raising the need for re-treatment as a result of structural instability. An examination of the conservation condition prior to conservation treatment found structural vulnerabilities because physical damage had been artificially inflicted throughout the area that was rendered defective at the time of manufacturing. The bonded surfaces for the cracked areas and detached fragments did not fit, and these areas and fragments had deteriorated because the adhesive trickled down onto the celadon surface or secondary contaminants, such as dust, were on the adhesive surface. The study identified the position, scope, and conditions of the bonded areas at the cracks UV rays and microscopy in order to investigate the condition of repair and restoration. By conducting Fourier-transform infrared spectroscopy(FT-IR) and portable x-ray fluorescence spectroscopy on the materials used for the former conservation treatment, the study confirmed the use of cellulose resins and epoxy resins as adhesives. Furthermore, the analysis revealed the addition of gypsum(CaSO4·2H2O) and bone meal(Ca10 (PO4)6(OH)2) to the adhesive to increase the bonding strength of some of the bonded areas that sustained force. Based on the results of the investigation, the conservation treatment for the artifact would focus on completely dismantling the existing bonded areas and then consolidating vulnerable areas through bonding and restoration. After removing and dismantling the prior adhesive used, the celadon stool was separated into 6 large fragments including the top and bottom, the curved legs, and some of the ring design. After dismantling, the remaining adhesive and contaminants were chemically and physically removed, and a steam cleaner was used to clean the fractured surfaces to increase the bonding efficacy of the re-bonding. The bonding of the artifact involved applying the adhesive differently depending on the bonding area and size. The cyanoacrylate resin Loctite 401 was used on the bonding area that held the positions of the fragments, while the acrylic resin Paraloid B-72 20%(in xylene) was treated on cross sections for reversibility in the areas that provided structural stability before bonding the fragments using the epoxy resin Epo-tek 301-2. For areas that would sustain force, as in the top and bottom, kaolin was added to Epo-tek 301-2 in order to reinforce the bonding strength. For the missing parts of the ring design where a continuous pattern could be assumed, a frame was made using SN-sheets, and the ring design was then modeled and restored by connecting the damaged cross section with Wood epos. Other restoration areas that occurred during bonding were treated by being filled with Wood epos for aesthetic and structural stabilization. Restored and filled areas were color-matched to avoid the feeling of disharmony from differences of texture in case of exhibitions in the future. The investigation and treatment process involving a variety of scientific technology was systematically documented so as to be utilized as basic data for the conservation and maintenance.

    Importance and Specialization Plan of the Indicators by the Function of the Arboretum (수목원 기능별 지표의 중요도와 특성화방안 - 대구, 경북, 경남 수목원을 대상으로 -)

    • Kim, Yong-Soo;Ha, Sun-Gyone;Park, Chan-Yong
      • Journal of Korean Society of Forest Science
      • /
      • v.98 no.4
      • /
      • pp.370-378
      • /
      • 2009
    • This study tries to provide the basic direction to form the arboretum with the distinct features by providing the basic data to help the differentiated strategy for each arboretum. For this purpose, the users' pattern, importance of the indicator by the function, and the stimulation and specialization importance were examined for Daegu Arboretum, Gyeongbuk Arboretum and Gyeongnam Arboretum in Gyeongsang Province. The result says, looking into the functions of arboretum, the collection function showed the highest importance in the preservation of the endangered crisis species; the display function showed the highest in the use as the nature experiencing spaces through the plant exhibition; the research function showed the highest in the study on Plant Systematics; the education function showed the highest in the protection of the native plants; and the recreational function showed the highest in the healthy recreational space. In the plan for the promotion of the arboretum showed the highest in the public education program operation such as the narration from arboretum and education for plant. Therefore, it is considered to need the system setup such as the education program, material development and specialist training in terms of the arboretum. For the specialization plan for arboretum in this study, it seem desirable to concentrate on the research and education related to the natural resources renewal, for Daegu Arboretum; to concentrate on the resort site for the protection and display of the species and the disabled visitors by utilizing the geographical traits in the mountains, for Gyeongbuk Arboretum; to create the specialization plan mainly for the tree species suitable for the warm weather and for the children.

    A Study on the Actual Conditions of and Satisfaction with the Existed Female Dress Forms Usage (국내 여성용 인대 사용 실태 및 만족도에 관한 연구)

    • Park Gin-Ah;Lee Hye-Young;Choi Jin-Hee
      • Journal of the Korean Society of Clothing and Textiles
      • /
      • v.30 no.3 s.151
      • /
      • pp.378-385
      • /
      • 2006
    • To release fashion trends in an efficient way, many of the apparel business and fashion educational institutes in land adopt fashion shows employing fashion models. Modeling rather than flat pattern making realizes the majority of the complicated design works for the fashion shows. However, for the different measurements between the dress form and the real human model, problems often occur during the modeling and fitting processes. Researches on the standard dress form development representing professional fashion models' features are therefore in urgent need to enable the related apparel business and fashion institutes to make appropriate use of the dress form in their jobs. The study has been conducted as a preliminary study using a questionnaire method ultimately to develop the female dress form. A questionnaire in the research aimed at an investigation into the actual conditions of and satisfaction with the usage and the body measurements of existed dress forms. Approximately 30 fashion-related educational institutes and 10 apparel companies responded to the survey. Data derived from the survey was analyzed using SPSS version 10.1, the statistics tool. The results throughout the research were discussed in terms of largely three categories that are; (1) the general conditions of the usage of the dress form to prepare fashion shows: e.g. the frequency of holding the fashion show in an annual term, the proportion of professional and amateur models employed for the fashion show, the methods to construct garments, types and number of dress forms utilized and etc.; (2) factors considered to purchase the dress form e.g. its functionality, shapes, sizes, duration, price, A/S condition and etc.; and(3) satisfaction with the similarity between the dress form and the human body in the relation to the body measurements. Measurements in length wise, front and back waist lengths, neck to bust point on the dress forms were apparently differed from the ones of the actual body. In particular, differed torso length measurements cause the problem to have to alter the whole silhouette, consequently, the resultant patterns as well. In girth measurements, in order of bust and waist girths, the satisfaction was low.


    (34141) Korea Institute of Science and Technology Information, 245, Daehak-ro, Yuseong-gu, Daejeon
    Copyright (C) KISTI. All Rights Reserved.