• 제목/요약/키워드: Pattern Recognition Method

검색결과 1,157건 처리시간 0.021초

뉴럴-퍼지패턴매칭에 의한 단어인식에 관한 연구 (A Study on Word Recognition Using Neural-Fuzzy Pattern Matching)

  • 이기영;최갑석
    • 전자공학회논문지B
    • /
    • 제29B권11호
    • /
    • pp.130-137
    • /
    • 1992
  • This paper presents the word recognition method using a neural-fuzzy pattern matching, in order to make a proper speech pattern for a spectrum sequence and to improve a recognition rate. In this method, a frequency variation is reduced by generating binary spectrum patterns through associative memory using a neural network, and a time variation is decreased by measuring the simillarity using a fuzzy pattern matching. For this method using binary spectrum patterns and logic algebraic operations to measure the simillarity, memory capacity and computation requirements are far less than those of DTW using a conventional distortion measure. To show the validity of the recognition performance for this method, word recognition experiments are carried out using 28 DDD city names and compared with DTW and a fuzzy pattern matching. The results show that our presented method is more excellent in the recognition performance than the other methods.

  • PDF

필기체 한글의 오프라인 인식을 위한 효과적인 두 단계 패턴 정합 방법 (Efficient two-step pattern matching method for off-line recognition of handwritten Hangul)

  • 박정선;이성환
    • 전자공학회논문지B
    • /
    • 제31B권4호
    • /
    • pp.1-8
    • /
    • 1994
  • In this paper, we propose an efficient two-step pattern matching method which promises shape distortion-tolerant recognition of handwritten of handwritten Hangul syllables. In the first step, nonlinear shape normalization is carried out to compensate for global shape distortions in handwritten characters, then a preliminary classification based on simple pattern matching is performed. In the next step, nonlinear pattern matching which achieves best matching between input and reference pattern is carried out to compensate for local shape distortions, then detailed classification which determines the final result of classification is performed. As the performance of recognition systems based on pattern matching methods is greatly effected by the quality of reference patterns. we construct reference patterns by combining the proposed nonlinear pattern matching method with a well-known averaging techniques. Experimental results reveal that recognition performance is greatly improved by the proposed two-step pattern matching method and the reference pattern construction scheme.

  • PDF

Pattern Recognition of Human Grasping Operations Based on EEG

  • Zhang Xiao Dong;Choi Hyouk-Ryeol
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권5호
    • /
    • pp.592-600
    • /
    • 2006
  • The pattern recognition of the complicated grasping operation based on electroencephalography (simply named as EEG) is very helpful on realtime control of the robotic hand. In the paper, a new spectral feature analysis method based on Band Pass Filter (simply named as BPF) and Power Spectral Analysis (simply named as PSA) is presented for discriminating the complicated grasping operations. By analyzing the spectral features of grasping operations with the use of the two-channel EEG measurement system and the pattern recognition of the BP neural network, the degree of recognition by the traditional spectral feature method based on FFT and the new spectral features method based on BPF and PSA could be compared. The results show that the proposed method provides highly improved performance than the traditional one because the new method has two obvious advantages such as high recognition capability and the fast learning speed.

자동화된 변전소의 주변압기 사고복구를 위한 패턴인식기법에 기반한 실시간 모선재구성 전략 개발 (Real-Time Bus Reconfiguration Strategy for the Fault Restoration of Main Transformer Based on Pattern Recognition Method)

  • 고윤석
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권11호
    • /
    • pp.596-603
    • /
    • 2004
  • This paper proposes an expert system based on the pattern recognition method which can enhance the accuracy and effectiveness of real-time bus reconfiguration strategy for the transfer of faulted load when a main transformer fault occurs in the automated substation. The minimum distance classification method is adopted as the pattern recognition method of expert system. The training pattern set is designed MTr by MTr to minimize the searching time for target load pattern which is similar to the real-time load pattern. But the control pattern set, which is required to determine the corresponding bus reconfiguration strategy to these trained load pattern set is designed as one table by considering the efficiency of knowledge base design because its size is small. The training load pattern generator based on load level and the training load pattern generator based on load profile are designed, which are can reduce the size of each training pattern set from max L/sup (m+f)/ to the size of effective level. Here, L is the number of load level, m and f are the number of main transformers and the number of feeders. The one reduces the number of trained load pattern by setting the sawmiller patterns to a same pattern, the other reduces by considering only load pattern while the given period. And control pattern generator based on exhaustive search method with breadth-limit is designed, which generates the corresponding bus reconfiguration strategy to these trained load pattern set. The inference engine of the expert system and the substation database and knowledge base is implemented in MFC function of Visual C++ Finally, the performance and effectiveness of the proposed expert system is verified by comparing the best-first search solution and pattern recognition solution based on diversity event simulations for typical distribution substation.

가상 로봇 팔 제어를 위한 퍼지-SOFM 방식의 근전도 패턴인식 (A Virtual Robot Arm Control by EMG Pattern Recognition of Fuzzy-SOFM Method)

  • 이정훈;정경권;이현관;엄기환
    • 전자공학회논문지CI
    • /
    • 제40권2호
    • /
    • pp.9-16
    • /
    • 2003
  • 본 논문에서는 개선된 SOFM(Self Organizing Feature Map)방식을 이용한 근전도 패턴인식으로 가상 로봇 팔을 제어하는 방식을 제안한다. 개선된 SOFM 방식은 근전도 신호의 전처리기를 사용하는 대신에 근전도 신호 자체를 SOFM에 입력으로 사용하고, 퍼지논리시스템을 이용하여 SOFM의 이웃반경과 학습율을 자동 조절하는 간단한 방식으로 입력 패턴을 더욱 빠르고 신뢰성있게 분류한다. 개선된 방식의 성능을 확인하기 위하여 어깨, 손목, 팔꿈치의 여섯 가지 동작의 근전도 패턴인식을 실험한 결과 기존의 일반적인 SOFM방식보다 제안한 SOFM방식의 인식율이 21.7% 향상되고, 평균학습 수도 절반이하로 감소되었으며, 인식한 근전도 신호를 이용하여 컴퓨터 상의 가상 로봇 팔을 정확하게 제어하였다.

Chemometric Tool of Chromatographic Pattern Recognition for the Analysis of Complex Mixtures

  • Park, Man-Ki;Park, Jeong-Hill;Cho, Jung-Hwan;Kim, Na-Young;Kang, Jong-Seong
    • Archives of Pharmacal Research
    • /
    • 제15권4호
    • /
    • pp.376-378
    • /
    • 1992
  • A chemical tool was developed for the analysis of complex mixtures such as crude drugs by the method of pattern recognition. Pattern recognition was accomplished by a multiple reference peak identification method and three kinds of outlier statistics. This tool was tested on the analysis of synthetic mixtures.

  • PDF

전자계산기에 의한 필기체 한글 인식에 관한 연구 (A study on the Automatic Recognition of Hand Printed Hangeul patterns by the Computer)

  • 남궁재찬;김영건
    • 한국통신학회논문지
    • /
    • 제5권1호
    • /
    • pp.44-48
    • /
    • 1980
  • 본 논문에서는 필기체 한글인식을 위한 한 방법을 제안했다. 기본 자모를 대상으로 하였으며, 임의의 Pattern에 대하여 접합보상및 정형 Algorithm을 제안하므로써 본래의 표준 한글 pattern으로 정형화하였다. 인식에는 Tree grammar를 사용하였으며, 새로운 Parsing 방법을 제안하므로써 종래의 방법보다 처리를 간단화시켰으며 error를 감소시켰다. 제한된 필기체에 대하여는 매우 효과적이었으며 on line 필기체 인식에도 유용성이 있음을 보였다.

  • PDF

실시간 근전도 패턴인식을 위한 특징투영 기법에 관한 연구 (A Study on Feature Projection Methods for a Real-Time EMG Pattern Recognition)

  • 추준욱;김신기;문무성;문인혁
    • 제어로봇시스템학회논문지
    • /
    • 제12권9호
    • /
    • pp.935-944
    • /
    • 2006
  • EMG pattern recognition is essential for the control of a multifunction myoelectric hand. The main goal of this study is to develop an efficient feature projection method for EMC pattern recognition. To this end, we propose a linear supervised feature projection that utilizes linear discriminant analysis (LDA). We first perform wavelet packet transform (WPT) to extract the feature vector from four channel EMC signals. For dimensionality reduction and clustering of the WPT features, the LDA incorporates class information into the learning procedure, and finds a linear matrix to maximize the class separability for the projected features. Finally, the multilayer perceptron classifies the LDA-reduced features into nine hand motions. To evaluate the performance of LDA for the WPT features, we compare LDA with three other feature projection methods. From a visualization and quantitative comparison, we show that LDA has better performance for the class separability, and the LDA-projected features improve the classification accuracy with a short processing time. We implemented a real-time pattern recognition system for a multifunction myoelectric hand. In experiment, we show that the proposed method achieves 97.2% recognition accuracy, and that all processes, including the generation of control commands for myoelectric hand, are completed within 97 msec. These results confirm that our method is applicable to real-time EMG pattern recognition far myoelectric hand control.

DNA 코딩방법과 GA 코딩방법의 패턴인식 성능 비교에 관한 연구 (Performance Comparison on Pattern Recognition Between DNA Coding Method and GA Coding Method)

  • 백동화;한승수
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 추계학술대회 및 정기총회
    • /
    • pp.383-386
    • /
    • 2002
  • In this paper, we investigated the pattern recognition performance of the numeric patterns (from 0 to 9) using DNA coding method. The pattern recognition performance of the DNA coding method is compared to the that of the GA(Genetic Algorithm). GA searches effectively an optimal solution via the artificial evolution of individual group of binary string using binary coding, while DNA coding method uses four-type bases denoted by A(Adenine), C(Cytosine), G(Guanine) and T(Thymine), The pattern recognition performance of GA and DNA coding method is evaluated by using the same genetic operators(crossover and mutation) and the crossover probability and mutation probability are set the same value to the both methods. The DNA coding method has better characteristics over genetic algorithms (GA). The reasons for this outstanding performance is multiple possible solution presentation in one string and variable solution string length.

유전알고리즘을 이용한 부분방전 패턴인식 최적화 연구 (A Study on the Optimization of PD Pattern Recognition using Genetic Algorithm)

  • 김성일;이상화;구자윤
    • 전기학회논문지
    • /
    • 제58권1호
    • /
    • pp.126-131
    • /
    • 2009
  • This study was carried out for the reliability of PD(Partial Discharge) pattern recognition. For the pattern recognition, the database for PD was established by use of self-designed insulation defects which occur and were mostly critical in GIS(Gas Insulated Switchgear). The acquired database was analyzed to distinguish patterns by means of PRPD(Phase Resolved Partial Discharge) method and stored to the form with to unite the average amplitude of PD pulse and the number of PD pulse as the input data of neural network. In order to prove the performance of genetic algorithm combined with neural network, the neural networks with trial-and-error method and the neural network with genetic algorithm were trained by same training data and compared to the results of their pattern recognition rate. As a result, the recognition success rate of defects was 93.2% and the neural network train process by use of trial-and-error method was very time consuming. The recognition success rate of defects, on the other hand, was 100% by applying the genetic algorithm at neural network and it took a relatively short time to find the best solution of parameters for optimization. Especially, it could be possible that the scrupulous parameters were obtained by genetic algorithm.