• Title/Summary/Keyword: Pattern Recognition Method

Search Result 1,157, Processing Time 0.032 seconds

A Study on Word Recognition Using Neural-Fuzzy Pattern Matching (뉴럴-퍼지패턴매칭에 의한 단어인식에 관한 연구)

  • 이기영;최갑석
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.11
    • /
    • pp.130-137
    • /
    • 1992
  • This paper presents the word recognition method using a neural-fuzzy pattern matching, in order to make a proper speech pattern for a spectrum sequence and to improve a recognition rate. In this method, a frequency variation is reduced by generating binary spectrum patterns through associative memory using a neural network, and a time variation is decreased by measuring the simillarity using a fuzzy pattern matching. For this method using binary spectrum patterns and logic algebraic operations to measure the simillarity, memory capacity and computation requirements are far less than those of DTW using a conventional distortion measure. To show the validity of the recognition performance for this method, word recognition experiments are carried out using 28 DDD city names and compared with DTW and a fuzzy pattern matching. The results show that our presented method is more excellent in the recognition performance than the other methods.

  • PDF

Efficient two-step pattern matching method for off-line recognition of handwritten Hangul (필기체 한글의 오프라인 인식을 위한 효과적인 두 단계 패턴 정합 방법)

  • 박정선;이성환
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.4
    • /
    • pp.1-8
    • /
    • 1994
  • In this paper, we propose an efficient two-step pattern matching method which promises shape distortion-tolerant recognition of handwritten of handwritten Hangul syllables. In the first step, nonlinear shape normalization is carried out to compensate for global shape distortions in handwritten characters, then a preliminary classification based on simple pattern matching is performed. In the next step, nonlinear pattern matching which achieves best matching between input and reference pattern is carried out to compensate for local shape distortions, then detailed classification which determines the final result of classification is performed. As the performance of recognition systems based on pattern matching methods is greatly effected by the quality of reference patterns. we construct reference patterns by combining the proposed nonlinear pattern matching method with a well-known averaging techniques. Experimental results reveal that recognition performance is greatly improved by the proposed two-step pattern matching method and the reference pattern construction scheme.

  • PDF

Pattern Recognition of Human Grasping Operations Based on EEG

  • Zhang Xiao Dong;Choi Hyouk-Ryeol
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.5
    • /
    • pp.592-600
    • /
    • 2006
  • The pattern recognition of the complicated grasping operation based on electroencephalography (simply named as EEG) is very helpful on realtime control of the robotic hand. In the paper, a new spectral feature analysis method based on Band Pass Filter (simply named as BPF) and Power Spectral Analysis (simply named as PSA) is presented for discriminating the complicated grasping operations. By analyzing the spectral features of grasping operations with the use of the two-channel EEG measurement system and the pattern recognition of the BP neural network, the degree of recognition by the traditional spectral feature method based on FFT and the new spectral features method based on BPF and PSA could be compared. The results show that the proposed method provides highly improved performance than the traditional one because the new method has two obvious advantages such as high recognition capability and the fast learning speed.

Real-Time Bus Reconfiguration Strategy for the Fault Restoration of Main Transformer Based on Pattern Recognition Method (자동화된 변전소의 주변압기 사고복구를 위한 패턴인식기법에 기반한 실시간 모선재구성 전략 개발)

  • Ko Yun-Seok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.11
    • /
    • pp.596-603
    • /
    • 2004
  • This paper proposes an expert system based on the pattern recognition method which can enhance the accuracy and effectiveness of real-time bus reconfiguration strategy for the transfer of faulted load when a main transformer fault occurs in the automated substation. The minimum distance classification method is adopted as the pattern recognition method of expert system. The training pattern set is designed MTr by MTr to minimize the searching time for target load pattern which is similar to the real-time load pattern. But the control pattern set, which is required to determine the corresponding bus reconfiguration strategy to these trained load pattern set is designed as one table by considering the efficiency of knowledge base design because its size is small. The training load pattern generator based on load level and the training load pattern generator based on load profile are designed, which are can reduce the size of each training pattern set from max L/sup (m+f)/ to the size of effective level. Here, L is the number of load level, m and f are the number of main transformers and the number of feeders. The one reduces the number of trained load pattern by setting the sawmiller patterns to a same pattern, the other reduces by considering only load pattern while the given period. And control pattern generator based on exhaustive search method with breadth-limit is designed, which generates the corresponding bus reconfiguration strategy to these trained load pattern set. The inference engine of the expert system and the substation database and knowledge base is implemented in MFC function of Visual C++ Finally, the performance and effectiveness of the proposed expert system is verified by comparing the best-first search solution and pattern recognition solution based on diversity event simulations for typical distribution substation.

A Virtual Robot Arm Control by EMG Pattern Recognition of Fuzzy-SOFM Method (가상 로봇 팔 제어를 위한 퍼지-SOFM 방식의 근전도 패턴인식)

  • 이정훈;정경권;이현관;엄기환
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.2
    • /
    • pp.9-16
    • /
    • 2003
  • We proposed a method of a virtual robot arm controlled by the EMG pattern recognition using an improved SOFM method. The proposed method is simple in that the EMG signals are used as SOFM's input directly without preprocessing but nevertheless input patterns are reliably classified and then used for fuzzy logic systems to automatically tune the neighborhood and the learning rate. In order to verify the effectiveness of the proposed method, we experimented on EMG pattern recognition of 6 movements from the shoulder, wrist, and elbow. Experimental results show that the proposed SOFM method has 21.7% higher recognition rate than the general SOFM method, the average number of learning iterations has been decreased, and then the virtual robot arm is controlled by EMG pattern recognition.

Chemometric Tool of Chromatographic Pattern Recognition for the Analysis of Complex Mixtures

  • Park, Man-Ki;Park, Jeong-Hill;Cho, Jung-Hwan;Kim, Na-Young;Kang, Jong-Seong
    • Archives of Pharmacal Research
    • /
    • v.15 no.4
    • /
    • pp.376-378
    • /
    • 1992
  • A chemical tool was developed for the analysis of complex mixtures such as crude drugs by the method of pattern recognition. Pattern recognition was accomplished by a multiple reference peak identification method and three kinds of outlier statistics. This tool was tested on the analysis of synthetic mixtures.

  • PDF

A study on the Automatic Recognition of Hand Printed Hangeul patterns by the Computer (전자계산기에 의한 필기체 한글 인식에 관한 연구)

  • 남궁재찬;김영건
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.5 no.1
    • /
    • pp.44-48
    • /
    • 1980
  • This paper proposes a method of the automatic recognition of the handprinted Hanguel patterns. A certain pattern oriented basic letters is normalized to the prototype Hanguel patten by the linking compansation and nomalization algorithm. Tree grammar is used in recognition process. Compared with the previous method. automata processing is simplified and the error is reduced by the new parsing method. This method shows the effectiveness for the constrained pattern. We expect that the new parsing method is very useful for the on-line pattern recognition.

  • PDF

A Study on Feature Projection Methods for a Real-Time EMG Pattern Recognition (실시간 근전도 패턴인식을 위한 특징투영 기법에 관한 연구)

  • Chu, Jun-Uk;Kim, Shin-Ki;Mun, Mu-Seong;Moon, In-Hyuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.9
    • /
    • pp.935-944
    • /
    • 2006
  • EMG pattern recognition is essential for the control of a multifunction myoelectric hand. The main goal of this study is to develop an efficient feature projection method for EMC pattern recognition. To this end, we propose a linear supervised feature projection that utilizes linear discriminant analysis (LDA). We first perform wavelet packet transform (WPT) to extract the feature vector from four channel EMC signals. For dimensionality reduction and clustering of the WPT features, the LDA incorporates class information into the learning procedure, and finds a linear matrix to maximize the class separability for the projected features. Finally, the multilayer perceptron classifies the LDA-reduced features into nine hand motions. To evaluate the performance of LDA for the WPT features, we compare LDA with three other feature projection methods. From a visualization and quantitative comparison, we show that LDA has better performance for the class separability, and the LDA-projected features improve the classification accuracy with a short processing time. We implemented a real-time pattern recognition system for a multifunction myoelectric hand. In experiment, we show that the proposed method achieves 97.2% recognition accuracy, and that all processes, including the generation of control commands for myoelectric hand, are completed within 97 msec. These results confirm that our method is applicable to real-time EMG pattern recognition far myoelectric hand control.

Performance Comparison on Pattern Recognition Between DNA Coding Method and GA Coding Method (DNA 코딩방법과 GA 코딩방법의 패턴인식 성능 비교에 관한 연구)

  • 백동화;한승수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.383-386
    • /
    • 2002
  • In this paper, we investigated the pattern recognition performance of the numeric patterns (from 0 to 9) using DNA coding method. The pattern recognition performance of the DNA coding method is compared to the that of the GA(Genetic Algorithm). GA searches effectively an optimal solution via the artificial evolution of individual group of binary string using binary coding, while DNA coding method uses four-type bases denoted by A(Adenine), C(Cytosine), G(Guanine) and T(Thymine), The pattern recognition performance of GA and DNA coding method is evaluated by using the same genetic operators(crossover and mutation) and the crossover probability and mutation probability are set the same value to the both methods. The DNA coding method has better characteristics over genetic algorithms (GA). The reasons for this outstanding performance is multiple possible solution presentation in one string and variable solution string length.

A Study on the Optimization of PD Pattern Recognition using Genetic Algorithm (유전알고리즘을 이용한 부분방전 패턴인식 최적화 연구)

  • Kim, Seong-Il;Lee, Sang-Hwa;Koo, Ja-Yoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.126-131
    • /
    • 2009
  • This study was carried out for the reliability of PD(Partial Discharge) pattern recognition. For the pattern recognition, the database for PD was established by use of self-designed insulation defects which occur and were mostly critical in GIS(Gas Insulated Switchgear). The acquired database was analyzed to distinguish patterns by means of PRPD(Phase Resolved Partial Discharge) method and stored to the form with to unite the average amplitude of PD pulse and the number of PD pulse as the input data of neural network. In order to prove the performance of genetic algorithm combined with neural network, the neural networks with trial-and-error method and the neural network with genetic algorithm were trained by same training data and compared to the results of their pattern recognition rate. As a result, the recognition success rate of defects was 93.2% and the neural network train process by use of trial-and-error method was very time consuming. The recognition success rate of defects, on the other hand, was 100% by applying the genetic algorithm at neural network and it took a relatively short time to find the best solution of parameters for optimization. Especially, it could be possible that the scrupulous parameters were obtained by genetic algorithm.