• Title/Summary/Keyword: Patient simulations

Search Result 80, Processing Time 0.03 seconds

The Influence of Feedback in the Simulated Patient Case-History Training among Audiology Students at the International Islamic University Malaysia

  • Dzulkarnain, Ahmad Aidil Arafat;Sani, Maryam Kamilah Ahmad;Rahmat, Sarah;Jusoh, Masnira
    • Korean Journal of Audiology
    • /
    • v.23 no.3
    • /
    • pp.121-128
    • /
    • 2019
  • Background and Objectives: There is a scant evidence on the use of simulations in audiology (especially in Malaysia) for case-history taking, although this technique is widely used for training medical and nursing students. Feedback is one of the important components in simulations training; however, it is unknown if feedback by instructors could influence the simulated patient (SP) training outcome for case-history taking among audiology students. Aim of the present study is to determine whether the SP training with feedback in addition to the standard role-play and seminar training is an effective learning tool for audiology case-history taking. Subjects and Methods: Twenty-six second-year undergraduate audiology students participated. A cross-over study design was used. All students initially attended two hours of seminar and role-play sessions. They were then divided into three types of training, 1) SP training (Group A), 2) SP with feedback (Group B), and 3) a non-additional training group (Group C). After two training sessions, the students changed their types of training to, 1) Group A and C: SP training with feedback, and 2) Group B: non-additional training. All the groups were assessed at three points: 1) pre-test, 2) intermediate, and 3) post-test. The normalized median score differences between and within the respective groups were analysed using non-parametric tests at 95% confidence intervals. Results: Groups with additional SP trainings (with and without feedback) showed a significantly higher normalized gain score than no training group (p<0.05). Conclusions: The SP training (with/without feedback) is a beneficial learning tool for history taking to students in audiology major.

Effective Methods for Heart Disease Detection via ECG Analyses

  • Yavorsky, Andrii;Panchenko, Taras
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.127-134
    • /
    • 2022
  • Generally developed for medical testing, electrocardiogram (ECG) recordings seizure the cardiac electrical signals from the surface of the body. ECG study can consequently be a vital first step to support analyze, comprehend, and expect cardiac ailments accountable for 31% of deaths globally. Different tools are used to analyze ECG signals based on computational methods, and explicitly machine learning method. In all abovementioned computational simulations are prevailing tools for cataloging and clustering. This review demonstrates the different effective methods for heart disease based on computational methods for ECG analysis. The accuracy in machine learning and three-dimensional computer simulations, among medical inferences and contributions to medical developments. In the first part the classification and the methods developed to get data and cataloging between standard and abnormal cardiac activity. The second part emphases on patient analysis from entire ECG recordings due to different kind of diseases present. The last part represents the application of wearable devices and interpretation of computer simulated results. Conclusively, the discussion part plans the challenges of ECG investigation and offers a serious valuation of the approaches offered. Different approaches described in this review are a sturdy asset for medicinal encounters and their transformation to the medical world can lead to auspicious developments.

Peer Role-Play in a College of Korean Medicine to Improve Senior Students' Competencies in Patient Care and Communication: A Case Analysis and Proposal for a Model (한의학 전공학생의 진료 및 의사소통 역량 향상을 위한 동료 역할극 모델제안과 사례분석)

  • Eunbyul Cho;Hyun-Jong Jung;Jungtae Leem
    • The Journal of Korean Medicine
    • /
    • v.43 no.3
    • /
    • pp.49-64
    • /
    • 2022
  • Objectives: Peer role-play (PRP) has been used in health care training simulations because standardized patient training requires considerable time and expense. This study described the implementation of clinical simulation using PRP and examined the effect. Methods: Final year students from a single college of Korean medicine engaged in PRP as part of clinical skills practice. Education tools from clinical practice guidelines were used to structure the PRP. Communication competency was assessed with the Korean Version of the Self-Efficacy Questionnaire (KSE-12). Whether this training helped to achieve graduate outcomes was evaluated on a five-point scale. Results: Fifty-nine students (53.2%) participated in the survey. Among 12 items on the KSE-12, the score for "How certain are you that you are able to successfully listen attentively to the patient?" was the highest. Further, PRP was found to be helpful for self-directed learning, establishment of one's professional identity, and the ability to communicate and manage patients. Three themes ("Benefits of role-play", "The importance of positive feedback", "Limitations and problems of role-play"), 15 categories, and 16 central meanings were derived by categorizing learners' subjective opinions about PRP. Conclusions: Study findings indicate that PRP may contribute to improving communication skills and establishing a professional identity for future Korean medicine doctors. We suggest using PRP in clinical education in colleges of Korean Medicine.

THE ADAPTATION METHOD IN THE MONTE CARLO SIMULATION FOR COMPUTED TOMOGRAPHY

  • LEE, HYOUNGGUN;YOON, CHANGYEON;CHO, SEUNGRYONG;PARK, SUNG HO;LEE, WONHO
    • Nuclear Engineering and Technology
    • /
    • v.47 no.4
    • /
    • pp.472-478
    • /
    • 2015
  • The patient dose incurred from diagnostic procedures during advanced radiotherapy has become an important issue. Many researchers in medical physics are using computational simulations to calculate complex parameters in experiments. However, extended computation times make it difficult for personal computers to run the conventional Monte Carlo method to simulate radiological images with high-flux photons such as images produced by computed tomography (CT). To minimize the computation time without degrading imaging quality, we applied a deterministic adaptation to the Monte Carlo calculation and verified its effectiveness by simulating CT image reconstruction for an image evaluation phantom (Catphan; Phantom Laboratory, New York NY, USA) and a human-like voxel phantom (KTMAN-2) (Los Alamos National Laboratory, Los Alamos, NM, USA). For the deterministic adaptation, the relationship between iteration numbers and the simulations was estimated and the option to simulate scattered radiation was evaluated. The processing times of simulations using the adaptive method were at least 500 times faster than those using a conventional statistical process. In addition, compared with the conventional statistical method, the adaptive method provided images that were more similar to the experimental images, which proved that the adaptive method was highly effective for a simulation that requires a large number of iterations-assuming no radiation scattering in the vicinity of detectors minimized artifacts in the reconstructed image.

Design of 8 Channel Insertional pTx Array Coil for 3T Body Imaging (8 채널 삽입형 3T Body pTx Array 코일 설계)

  • Kim, Young Beom;Ryu, Yeunchul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.546-550
    • /
    • 2014
  • In this research, we report all the elements are placed in the space above the patient table as a transmit coil to give optimized B1+ field for the body object. Through the simulations, we compared upper-and-lower parts combined 8 channel Tx array to upper only 8 channel Tx array and showed the utilities of B1+ shimming in multi-channel Tx body imaging at 3T. Half-cylinder shaped upper array shows weak B1+ field area around back of patient without B1+ shimming. After B1+ shimming, highly induced SAR places occurred in the arm region due to the close distance to the both end elements which were driven by very high RF current to enhance B1+ in back area. The proposed upper and lower combined array provides an enhanced homogeneous B1+ field in large ROI imaging as a result of shimming over the body size phantom. Through this research we proved the usefulness of the proposed insertional upper and lower parts combined transmit array for 3T body imaging.

Development of Computer Aided 3D Model From Computed Tomography Images and its Finite Element Analysis for Lumbar Interbody Fusion with Instrumentation

  • Deoghare, Ashish;Padole, Pramod
    • International Journal of CAD/CAM
    • /
    • v.9 no.1
    • /
    • pp.121-128
    • /
    • 2010
  • The purpose of this study is to clarify the mechanical behavior of human lumbar vertebrae (L3/L4) with and without fusion bone under physiological axial compression. The author has developed the program code to build the patient specific three-dimensional geometric model from the computed tomography (CT) images. The developed three-dimensional model provides the necessary information to the physicians and surgeons to visually interact with the model and if needed, plan the way of surgery in advance. The processed data of the model is versatile and compatible with the commercial computer aided design (CAD), finite element analysis (FEA) software and rapid prototyping technology. The actual physical model is manufactured using rapid prototyping technique to confirm the executable competence of the processed data from the developed program code. The patient specific model of L3/L4 vertebrae is analyzed under compressive loading condition by the FEA approach. By varying the spacer position and fusion bone with and without pedicle instrumentation, simulations were carried out to find the increasing axial stiffness so as to ensure the success of fusion technique. The finding was helpful in positioning the fusion bone graft and to predict the mechanical stress and deformation of body organ indicating the critical section.

Effects of a Virtual Reality Simulation and a Blended Simulation of Care for Pediatric Patient with Asthma (천식 아동 간호에 대한 가상현실 시뮬레이션과 블렌디드 시뮬레이션 교육 효과)

  • Kim, Mikang;Kim, Sunghee;Lee, Woo Sook
    • Child Health Nursing Research
    • /
    • v.25 no.4
    • /
    • pp.496-506
    • /
    • 2019
  • Purpose: The purpose of this study was to examine the effects of a virtual reality simulation and a blended simulation on nursing care for children with asthma through an evaluation of critical thinking, problem-solving processes, and clinical performance in both education groups before and after the educational intervention. Methods: The participants were 48 nursing students. The experimental group (n=22) received a blended simulation, combining a virtual reality simulation and a high-fidelity simulation, while the control group (n=26) received only a virtual reality simulation. Data were collected from February 25 to 28, 2019 and analyzed using SPSS version 25 for Windows. Results: The pretest and posttest results of each group showed statistically significant improvements in critical thinking, problem-solving processes, and clinical performance. In a comparison of the results of the two education groups, the only statistically significant difference was found for critical thinking. Conclusion: Simulation-based education in child nursing has continued to involve high-fidelity simulations that are currently run in many programs. However, incorporating a new type of blended simulation, combining a virtual reality simulation and a high-fidelity simulation, into the nursing curriculum may contribute to the further development of nursing education.

Utilization of desktop 3D printer-fabricated "Cost-Effective" 3D models in orthognathic surgery

  • Narita, Masato;Takaki, Takashi;Shibahara, Takahiko;Iwamoto, Masashi;Yakushiji, Takashi;Kamio, Takashi
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.42
    • /
    • pp.24.1-24.7
    • /
    • 2020
  • Background: In daily practice, three-dimensional patient-specific jawbone models (3D models) are a useful tool in surgical planning and simulation, resident training, patient education, and communication between the physicians in charge. The progressive improvements of the hardware and software have made it easy to obtain 3D models. Recently, in the field of oral and maxillofacial surgery, there are many reports on the benefits of 3D models. We introduced a desktop 3D printer in our department, and after a prolonged struggle, we successfully constructed an environment for the "in-house" fabrication of the previously outsourced 3D models that were initially outsourced. Through various efforts, it is now possible to supply inexpensive 3D models stably, and thus ensure safety and precision in surgeries. We report the cases in which inexpensive 3D models were used for orthodontic surgical simulation and discuss the surgical outcomes. Review: We explained the specific CT scanning considerations for 3D printing, 3D printing failures, and how to deal with them. We also used 3D models fabricated in our system to determine the contribution to the surgery. Based on the surgical outcomes of the two operators, we compared the operating time and the amount of bleeding for 25 patients who underwent surgery using a 3D model in preoperative simulations and 20 patients without using a 3D model. There was a statistically significant difference in the operating time between the two groups. Conclusions: In this article, we present, with surgical examples, our in-house practice of 3D simulation at low costs, the reality of 3D model fabrication, problems to be resolved, and some future prospects.

Effect of simulation-based practice program on ACLS study of paramedic students (시뮬레이션을 활용한 전문심장구조술(ACLS) 실습프로그램의 효과 - 응급구조과 학생을 대상으로 -)

  • Pi, Hye-Young
    • The Korean Journal of Emergency Medical Services
    • /
    • v.17 no.3
    • /
    • pp.139-147
    • /
    • 2013
  • Purpose: The purpose of the study is to confirm the effect of ACLS program using simulations and understanding self-efficacy, practice satisfaction, learning attitude, and interest in ACLS after theory classes and simulation-based practice. Methods: A non-equivalent simulation-based practice post test design was used. The participants were 28 paramedic students. The students participated in simulation-based practice for 3 weeks and conventional instruction class for 12 weeks. Results: The students showed higher level of self-efficacy(p=.043), practice satisfaction(p<.001) and learning attitude(p=.003) compared to the conventional lecture students. Conclusion: Level of self-efficacy after simulation-based practice for ACLS was higher than that of self-efficacy after conventional instruction classes. Level of practice satisfaction was also higher. Academic achievement after simulation-based practice was higher than that in conventional instruction classes.

THE RELATIVE IMPORTANCE OF NON-NEWTONIAN CHARACTERISTICS OF BLOOD IN THE HEMODYNAMICS OF THE CAROTID BIFURCATION (경동맥 혈류유동에서의 혈액의 비뉴우토니안 특성의 상대적 중요성 해석)

  • Lee, S.W.;Steinman, D.A.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.181-185
    • /
    • 2008
  • In this study, we attempted to quantify the relative importance of assumptions regarding blood rheology. Three patient-specific carotid bifurcation geometries and time-varying flow rates were obtained using magnetic resonance imaging. For each subject, CFD simulations were carried out assuming two different non-Newtonian rheology models Carreau and Ballyk models) and rescaled Newtonian viscosities based on characteristic shear rates to account for the shear-thinning property of blood. The sensitivity of WSS and oscillatory shear index (OSI) were contextualized with respect to the reproducibility of the reconstructed geometry and to assumptions regarding the inlet boundary conditions. We conclude that the assumption of Newtonian fluid is reasonable for studies aimed at quantifying the distribution of WSS-based extrema in an image-based CFD model of carotid bifurcation.

  • PDF