• 제목/요약/키워드: Pathogenic mechanisms

검색결과 178건 처리시간 0.028초

Unusual or Uncommon Histology of Gastric Cancer

  • Jinho Shin;Young Soo Park
    • Journal of Gastric Cancer
    • /
    • 제24권1호
    • /
    • pp.69-88
    • /
    • 2024
  • This review comprehensively examines the diverse spectrum of gastric cancers, focusing on unusual or uncommon histology that presents significant diagnostic and therapeutic challenges. While the predominant form, tubular adenocarcinoma, is well-characterized, this review focuses on lesser-known variants, including papillary adenocarcinoma, micropapillary carcinoma, adenosquamous carcinoma, squamous cell carcinoma (SCC), hepatoid adenocarcinoma, gastric choriocarcinoma, gastric carcinoma with lymphoid stroma, carcinosarcoma, gastroblastoma, parietal cell carcinoma, oncocytic adenocarcinoma, Paneth cell carcinoma, gastric adenocarcinoma of the fundic gland type, undifferentiated carcinoma, and extremely well-differentiated adenocarcinoma. Although these diseases have different nomenclatures characterized by distinct histopathological features, these phenotypes often overlap, making it difficult to draw clear boundaries. Furthermore, the number of cases was limited, and the unique histopathological nature and potential pathogenic mechanisms were not well defined. This review highlights the importance of understanding these rare variants for accurate diagnosis, effective treatment planning, and improving patient outcomes. This review emphasizes the need for ongoing research and case studies to enhance our knowledge of these uncommon forms of gastric cancer, which will ultimately contribute to more effective treatments and better prognostic assessments. This review aimed to broaden the pathological narrative by acknowledging and addressing the intricacies of all cancer types, regardless of their rarity, to advance patient care and improve prognosis.

Understanding the Pathophysiology and Magnetic Resonance Imaging of Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders

  • Laura Cacciaguerra;Maria A. Rocca;Massimo Filippi
    • Korean Journal of Radiology
    • /
    • 제24권12호
    • /
    • pp.1260-1283
    • /
    • 2023
  • Magnetic resonance imaging (MRI) has been extensively applied in the study of multiple sclerosis (MS), substantially contributing to diagnosis, differential diagnosis, and disease monitoring. MRI studies have significantly contributed to the understanding of MS through the characterization of typical radiological features and their clinical or prognostic implications using conventional MRI pulse sequences and further with the application of advanced imaging techniques sensitive to microstructural damage. Interpretation of results has often been validated by MRI-pathology studies. However, the application of MRI techniques in the study of neuromyelitis optica spectrum disorders (NMOSD) remains an emerging field, and MRI studies have focused on radiological correlates of NMOSD and its pathophysiology to aid in diagnosis, improve monitoring, and identify relevant prognostic factors. In this review, we discuss the main contributions of MRI to the understanding of MS and NMOSD, focusing on the most novel discoveries to clarify differences in the pathophysiology of focal inflammation initiation and perpetuation, involvement of normal-appearing tissue, potential entry routes of pathogenic elements into the CNS, and existence of primary or secondary mechanisms of neurodegeneration.

Lactobacillus Persisters Formation and Resuscitation

  • Hyein Kim;Sejong Oh;Sooyeon Song
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권4호
    • /
    • pp.854-862
    • /
    • 2024
  • Lactobacillus is a commonly used probiotic, and many researchers have focused on its stress response to improve its functionality and survival. However, studies on persister cells, dormant cells that aid bacteria in surviving general stress, have focused on pathogenic bacteria that cause infection, not Lactobacillus. Thus, understanding Lactobacillus persister cells will provide essential clues for understanding how Lactobacillus survives and maintains its function under various environmental conditions. We treated Lactobacillus strains with various antibiotics to determine the conditions required for persister formation using kill curves and transmission electron microscopy. In addition, we observed the resuscitation patterns of persister cells using single-cell analysis. Our results show that Lactobacillus creates a small population of persister cells (0.0001-1% of the bacterial population) in response to beta-lactam antibiotics such as ampicillin and amoxicillin. Moreover, only around 0.5-1% of persister cells are heterogeneously resuscitated by adding fresh media; the characteristics are typical of persister cells. This study provides a method for forming and verifying the persistence of Lactobacillus and demonstrates that antibiotic-induced Lactobacillus persister cells show characteristics of dormancy, sensitivity of antibiotics, same as exponential cells, multi-drug tolerance, and resuscitation, which are characteristics of general persister cells. This study suggests that the mechanisms of formation and resuscitation may vary depending on the characteristics, such as the membrane structure of the bacterial species.

Complete genome sequence of Treponema pedis GNW45 isolated from dairy cattle with active bovine digital dermatitis in Korea

  • Hector Espiritu;Lovelia Mamuad;Edeneil Jerome Valete;Sang-Suk Lee;Yong-Il Cho
    • Journal of Animal Science and Technology
    • /
    • 제66권5호
    • /
    • pp.1079-1082
    • /
    • 2024
  • Treponema pedis, a fastidious anaerobic spirochete, is one of the main pathogens involved in the development and progression of bovine digital dermatitis (BDD), a lameness-causing hoof infection in cattle. Here, the complete genome sequencing of T. pedis GNW45 isolated from a dairy cow infected with BDD, was presented. Libraries for long and short reads were sequenced using PacBioRSII and Illimuna HiSeqXTen platforms, respectively. De-novo assembly was done using the long reads, producing a circular contig, by which the short reads were aligned to generate a more accurate genome sequence. The genome has a total size of 3,077,465 base pairs, with 36.84% guanine-cytosine content. A total of 2,749 protein-coding sequences, seven ribosomal RNA's, and 45 transfer RNA's were annotated. Functional analysis revealed genes associated with pathogenicity and survivability in the complex pathobiome of BDD. This study provided novel insights into the survival and pathogenic mechanisms of T. pedis GNW45.

Oral symptom manifestations in patients with COVID-19: gustatory and saliva secretion dysfunctions and pathogenetic hypotheses

  • Joungmok Kim;Jeong Hee Kim
    • International Journal of Oral Biology
    • /
    • 제49권3호
    • /
    • pp.61-68
    • /
    • 2024
  • Coronavirus disease 2019 (COVID-19) is a highly contagious illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This disease is characterized by a wide spectrum of symptoms, ranging from mild to severe, including fatal outcomes. This study aims to review gustatory and salivary secretion dysfunctions and determine their potential pathogenic mechanisms. Gustatory impairment and salivary dysfunction are prevalent among patients with acute COVID-19 and those recovering from the disease. The mouth serves as a critical entry route for SARS-CoV-2. The cells within the oral epithelium, taste buds, and minor and major salivary glands express key entry factors for SARS-CoV-2, including angiotensin-converting enzyme 2, transmembrane serine protease 2, and furin. The co-occurrence of gustatory and salivary secretion dysfunctions possibly has pathogenetic association with the following factors: the expression of SARS-CoV-2 cellular entry receptors in the taste buds and salivary glands and SARS-CoV-2-induced zinc deficiency, which is crucial for normal taste perception and saliva secretion. Furthermore, the cytokine storm triggered by COVID-19 contributes to secondary damage affecting gustatory and salivary functions.

쥐 모델에 있어 내독소에 의한 실험적인 범발성 혈관내 응고증 (Experimental Endotoxin-Induced Disseminated Intravascular Coagulation in Rat Model)

  • Seok- Cheol Choi;Jai-Young Kim;Jin-Bog Koh;Won-Jae Lee
    • 대한의생명과학회지
    • /
    • 제3권2호
    • /
    • pp.83-88
    • /
    • 1997
  • 범발성 혈관내 응고증은 패혈증 환자들에 있어 빈번히 발생하며 여러 가지 위급한 질병 상태에 관계하는 병리학적 상황이다. 범발성 혈관내 응고증은 기존의 복잡한 임상 상황을 더욱 어렵게 만들어서 높은 사망률의 원인이 된다. 그럼에도 불구하고 그것의 병인적 기전들은 완전히 규명되지 않았다. 본 연구는 범발성 혈관내 응고증의 발생에 관여하는 병인적 기전들의 이해를 위해 전향적으로 계획되었다. 15마리의 쥐를 대상으로 해서 연구목적에 따라 세 군으로 나누었다:I 군은 대조군으로서 내독소를 투여하지 않은 쥐들이고 (n=5), II 군은 내독소 투여 후 12시간이 경과한 쥐들이며 (n=5), III군은 내독소 투여 후 24시간이 경과한 쥐들이었다 (n=5). 실험적 범발성 혈관내 응고증은 일정량의 내 독소를 한번에 투여하여 유도하였다 (1mg/kg, E. coli serotype 055:B5). 실험대상 쥐들의 심장으로부터 직접 채혈하여 혈소판수, 섬유소원 농도, plasminogen 농도, 항트롬빈 III 농도, D-dimer, 보체성분 (C3 및 C4)을 측정하였다. 내독소를 투여한 II 군과 III 군에 있어 혈소판수, 섬유소원 (III 군의 경우는 오히려 증가), plasminogen, 항트롬빈 III, 그리고 C3등의 혈중 농도들이 대체로 감소하였고 D-dimer 농도는 증가함으로써 명백한 범발성 혈관내 응고증이 관찰되었다. 본 연구 결과들은 내독소에 의해 응고계, 섬유소용해계, 그리고 보체계와 같은 여러경로의 활성화가 유도될 수 있으며, 이로해서 범발성 혈관내 응고증 및 이차적인 중복 장기기능 부전이 발생하리라는 점을 시사하고 있다. 결국, 이와같은 실험적인 내독소 유도 범발성 혈관내 응고증에 있어 응고계 및 섬유소 용해계의 활성을 일으키는 다양한 기전에 관한 축척된 지식들은 그와 같은 질병의 예방 혹은 치료방법을 제공해 줄 것이다.

  • PDF

Indigo Naturalis in Inflammatory Bowel Disease: mechanisms of action and insights from clinical trials

  • Hyeonjin Kim;Soohyun Jeong;Sung Wook Kim;Hyung-Jin Kim;Dae Yong Kim;Tae Han Yook;Gabsik Yang
    • 대한약침학회지
    • /
    • 제27권2호
    • /
    • pp.59-69
    • /
    • 2024
  • This study investigates the therapeutic potential of Indigo Naturalis (IN) in treating a Inflammatory Bowel Disease (IBD). The objective is to comprehensively examine the effects and pharmacological mechanisms of IN on IBD, assessing its potential as an novel treatment for IBD. Analysis of 11 selected papers is conducted to understand the effects of IN, focusing on compounds like indirubin, isatin, indigo, and tryptanthrin. This study evaluates their impact on Disease Activity Index (DAI) score, colon length, mucosal damage, and macrophage infiltration in Dextran Sulfate Sodium (DSS)-induced colitis mice. Additionally, It investigate into the anti-inflammatory mechanisms, including Aryl hydrocarbon Receptor (AhR) pathway activation, Nuclear Factor kappa B (NF-κB)/nod-like receptor family pyrin domain containing 3 (NLRP3)/Interleukin 1 beta (IL-1β) inhibition, and modulation of Toll-like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MYD88)/NF-κB and Mitogen Activated Protein Kinase (MAPK) pathways. Immunomodulatory effects on T helper 17 (Th17)/regulatory T cell (Treg cell) balance and Glycogen synthase kinase-3 beta (GSK3-β) expression are also explored. Furthermore, the study addresses the role of IN in restoring intestinal microbiota diversity, reducing pathogenic bacteria, and increasing beneficial bacteria. The findings reveal that IN, particularly indirubin and indigo, demonstrates significant improvements in DAI score, colon length, mucosal damage, and macrophage infiltration in DSS-induced colitis mice. The anti-inflammatory effects are attributed to the activation of the AhR pathway, inhibition of inflammatory pathways, and modulation of immune responses. These results exhibit the potential of IN in IBD treatment. Notably, the restoration of intestinal microbiota diversity and balance further supports its efficacy. IN emerges as a promising and effective treatment for IBD, demonstrating anti-inflammatory effects and positive outcomes in preclinical studies. However, potential side effects necessitate further investigation for safe therapeutic development. The study underscores the need for future research to explore a broader range of active ingredients in IN to enhance therapeutic efficacy and safety.

Screening and isolation of antibacterial proteinaceous compounds from flower tissues: Alternatives for treatment of healthcare-associated infections

  • de Almeida, Renato Goulart;Silva, Osmar Nascimento;de Souza Candido, Elizabete;Moreira, Joao Suender;Jojoa, Dianny Elizabeth Jimenez;Gomes, Diego Garces;de Souza Freire, Mirna;de Miranda Burgel, Pedro Henrique;de Oliveira, Nelson Gomes Junior;Valencia, Jorge William Arboleda;Franco, Octavio Luiz;Dias, Simoni Campos
    • 셀메드
    • /
    • 제4권1호
    • /
    • pp.5.1-5.8
    • /
    • 2014
  • Healthcare-associated infection represents a frequent cause of mortality that increases hospital costs. Due to increasing microbial resistance to antibiotics, it is necessary to search for alternative therapies. Consequently, novel alternatives for the control of resistant microorganisms have been studied. Among them, plant antimicrobial protein presents enormous potential, with flowers being a new source of antimicrobial molecules. In this work, the antimicrobial activity of protein-rich fractions from flower tissues from 18 different species was evaluated against several human pathogenic bacteria. The results showed that protein-rich fractions of 12 species were able to control bacterial development. Due its broad inhibition spectrum and high antibacterial activity, the protein-rich fraction of Hibiscus rosa-sinensis was subjected to DEAE-Sepharose chromatography, yielding a retained fraction and a non-retained fraction. The retained fraction inhibits 29.5% of Klebsiella pneumoniae growth, and the non-retained fraction showed 31.5% of growth inhibition against the same bacteria. The protein profile of the chromatography fractions was analyzed by using SDS-PAGE, revealing the presence of two major protein bands in the retained fraction, of 20 and 15 kDa. The results indicate that medicinal plants have the biotechnological potential to increase knowledge about antimicrobial protein structure and action mechanisms, assisting in the rational design of antimicrobial compounds for the development of new antibiotic drugs.

진균성 식물병해 방제를 위한 항생물질 생산 길항미생물의 복합제제화 (A Multi-microbial Biofungicide for the Biological Control against Several Important Plant Pathogenic Fungi)

  • 정희경;류재천;김상달
    • Applied Biological Chemistry
    • /
    • 제48권1호
    • /
    • pp.40-47
    • /
    • 2005
  • 진균성식물병을 생물학적으로 방제할 수 있는 미생물제제의 개발을 위하여 경북 지역의 저병해 경작지 토양에서 고추역병균 Phytophthota capsici과 시들음병균 Fusarium oxysporum에 강력한 길항능을 가지며 균주 상호간에 공생이 가능한 AY1, AY6, AB1, BB2, F4, 5종의 균주를 선발하였다. 이들의 P. capsici에 대한 길항기작은 모두 내열성 저분자의 항균성 항생물질 생산에 의한 것이었으며, 이 중 BB2균주는 항생물질 생산능뿐만 아니라 고추역병균의 세포의벽 가수분해효소인 cellulase도 생산하여 다기능 길항기작을 보유하고 있었다. 선발된 5종 균주는 Halobacterium sp. AB1, Xenorhadus sp. AY1, Bacillus sp. AY6, Bacillus sp. BB2, Zymomonas sp. F4로 각각 동정되었으며, 이들은 0.1% galactose, 0.1% $NaNO_2$, 5 mM $Na_2HPO_4$가 포함된 배지에서 pH 5.5의 조건에서 48시간 배양했을 때 길항물질 생산능이 매우 우수하였고, 이 배양액을 1톤 규모의 발효탱크에 접종하고 대량배양 후 복합 미생물제제로 생산하였으며, 생산된 시제품의 액상 미생물제제는 경북 영천지역의 농가의 시험포장에서 3일 간격으로 3회 처리 해 본 포장시험에서 오이덩굴쪼김병, 방울토마토시드름병의 방제와 시금치잘록병의 방제 및 생육촉진에 탁월한 효과가 있었다.

흰점박이꽃무지(Protaetia brevitarsis seulensis) 유충에서 병원균과 공생균 분비물질들에 의한 세포성면역반응 (Cellular Immune Response of Protaetia brevitarsis seulensis Larvae to Metabolites Produced by Pathogenic and Symbiotic Bacteria)

  • 황두선;조세열
    • 한국응용곤충학회지
    • /
    • 제57권1호
    • /
    • pp.25-32
    • /
    • 2018
  • 곤충의 면역반응에 대한 연구는 곤충 체내 침입한 미생물들과 직접 반응하는 기작들을 중심으로 연구되었다. 그러나 미생물들이 곤충 체내에 침입 한 후 발생되는 다양한 미생물 분비물질에 의한 곤충 면역반응의 시작여부 등에 대한 연구는 거의 없는 실정이다. 이를 위하여 흰점박이 꽃무지(Protaetia brevitarsis seulensis) 유충의 장내에 존재하는 공생균과 체외 병원균을 동일한 조건에서 배양 하고 다양한 분비물질들이 존재 할 거라 예상되는 배양액만을 분리, 유충에 주사하여 면역반응 여부를 조사하였다. 공생균 배양액을 주입한 유충들은 비교적 건강하고 면역반응도 발생하지 않았으나 병원균 배양액을 주입한 유충의 경우 150시간 후 60% 이상 사망하였고 주사된 자리도 짙은 갈색의 멜라닌화가 관찰 되었다. 이러한 면역반응은 과립혈구세포의 리소좀(Lysosomes) 활성화 여부로 재확인 하였다. 병원균 배양액이 주입된 유충들의 경우 12시간 후 리소좀이 ~50% 이상 활성화 되었으나 공생균 배양액이 주입된 유충들의 경우 ~5% 미만으로 활성화 되는 것으로 나타났다. 따라서 공생균 배양액내에는 기주면역반응을 유도하는 물질들이 없거나 량이 매우 적게 존재하는 것을 추측 할 수 있었다.