DOI QR코드

DOI QR Code

Cellular Immune Response of Protaetia brevitarsis seulensis Larvae to Metabolites Produced by Pathogenic and Symbiotic Bacteria

흰점박이꽃무지(Protaetia brevitarsis seulensis) 유충에서 병원균과 공생균 분비물질들에 의한 세포성면역반응

  • Hwang, Dooseon (Department of Applied Biology, Division of Bioresource Sciences, College of Agriculture and Life Science, Environment Friendly Agriculture Center, Kangwon National University) ;
  • Cho, Saeyoull (Department of Applied Biology, Division of Bioresource Sciences, College of Agriculture and Life Science, Environment Friendly Agriculture Center, Kangwon National University)
  • 황두선 (강원대학교 생물자원과학부 응용생물전공) ;
  • 조세열 (강원대학교 생물자원과학부 응용생물전공)
  • Received : 2017.09.19
  • Accepted : 2018.01.30
  • Published : 2018.03.01

Abstract

Studies of immune responses in insects have focused on mechanisms that interact directly with invading microorganisms. However, few studies have examined the immune response to various metabolites produced by microorganisms after they enter the host. Here, we examined immune responses in Protaetia brevitarsis seulensis larvae induced by metabolites produced by symbiotic and pathogenic bacteria. The two types of bacteria were cultured under the same conditions. The bacteria were then removed and the remaining culture supernatant was injected into the larvae. The larvae injected with culture medium (Ch-medium) from symbiotic bacteria remained relatively healthy and did not develop an immune response, whereas more than 60% of the larvae injected with pathogen culture medium (Ec-medium) died after 150 hours and dark brown patches of melanin were observed at the injection site. This immune response was confirmed by the finding of activated lysosomes in insect granulocytes. More than 50% of lysosomes in larvae injected with pathogen culture medium were strongly stained after 12 h, but less than 5% of those injected with symbiotic culture media were stained. Therefore, it is assumed that symbiotic bacteria produce few (if any) substances that induce host immune responses.

곤충의 면역반응에 대한 연구는 곤충 체내 침입한 미생물들과 직접 반응하는 기작들을 중심으로 연구되었다. 그러나 미생물들이 곤충 체내에 침입 한 후 발생되는 다양한 미생물 분비물질에 의한 곤충 면역반응의 시작여부 등에 대한 연구는 거의 없는 실정이다. 이를 위하여 흰점박이 꽃무지(Protaetia brevitarsis seulensis) 유충의 장내에 존재하는 공생균과 체외 병원균을 동일한 조건에서 배양 하고 다양한 분비물질들이 존재 할 거라 예상되는 배양액만을 분리, 유충에 주사하여 면역반응 여부를 조사하였다. 공생균 배양액을 주입한 유충들은 비교적 건강하고 면역반응도 발생하지 않았으나 병원균 배양액을 주입한 유충의 경우 150시간 후 60% 이상 사망하였고 주사된 자리도 짙은 갈색의 멜라닌화가 관찰 되었다. 이러한 면역반응은 과립혈구세포의 리소좀(Lysosomes) 활성화 여부로 재확인 하였다. 병원균 배양액이 주입된 유충들의 경우 12시간 후 리소좀이 ~50% 이상 활성화 되었으나 공생균 배양액이 주입된 유충들의 경우 ~5% 미만으로 활성화 되는 것으로 나타났다. 따라서 공생균 배양액내에는 기주면역반응을 유도하는 물질들이 없거나 량이 매우 적게 존재하는 것을 추측 할 수 있었다.

Keywords

References

  1. Bang, K., Hwang, S., Lee, J., Cho, S., 2015. Identification of immunity-related genes in the larvae of Protaetia brevitarsis seulensis (Coleoptera: Cetoniidae) by a next-generation sequencing-based transcriptome analysis. J. Insect Sci. 15, 142. https://doi.org/10.1093/jisesa/iev120
  2. Brestoff, J.R., Artis, D., 2013. Commensal bacteria at the interface of host metabolism and the immune system. Nat. Immunol. 14, 676-684. https://doi.org/10.1038/ni.2640
  3. Buchon, N., Silverman, N., Cherry, S., 2014. Immunity in Drosophila melanogaster from microbial recognition to whole organism physiology. Nat. Rev. Immunol. 14, 796-810. https://doi.org/10.1038/nri3763
  4. Carlsson, A., Nystrom T., de Cock H., Bennich H., 1998. Attacin-an insect immune protein-binds LPS and triggers the specific inhibition of bacterial outer-membrane protein synthesis. Microbiology 144, 2179-2188. https://doi.org/10.1099/00221287-144-8-2179
  5. Charles, H.M., Killian K.A., 2015. Response of the insect immune system to three different immune challenges. J. Insect Physiol. 81, 97-108. https://doi.org/10.1016/j.jinsphys.2015.07.005
  6. Cheng, J., Wang, Y., Li, F., Liu, J., Sun, Y., Wu, J., 2014. Cloning and characterization of a mannose binding C-type lectin gene from salivary gland of Aedes albopictus. Parasites Vectors 7, 337. https://doi.org/10.1186/1756-3305-7-337
  7. Cho, S., 2016. Ultrastructure characterization of hemocytes in larva of Protaetia brevitarsis seulensis. Korean J. Appl. Entomol. 55, 215-221.
  8. Ferrandon, D., Imler, J., Hetru, C., Hoffmann, J.A., 2007. The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections. Nat. Rev. Immunol. 7, 862-874. https://doi.org/10.1038/nri2194
  9. Hwang, S., Bang, K., Lee, J., Cho, S., 2015. Circulating hemocytes from larvae of the Japanese rhinoceros beetle Allomyrina dichotoma (Linnaeus) (Coleoptera: Scarabaeidae) and the cellular immune response to microorganisms. PLoS ONE. 10, e0128519. https://doi.org/10.1371/journal.pone.0128519
  10. Kwon, O., 2009. Effect of different diets on larval growth of Protaetia brevitarsis seulensis (Kolbe) (Coleoptera: Cetoniidae). Entomol. Res. 39, 152-154. https://doi.org/10.1111/j.1748-5967.2009.00213.x
  11. Kwon, H., Bang, K., Cho, S., 2014. Characterization of the Hemocytes in Larvae of Protaetia brevitarsis seulensis: Involvement of Granulocyte-Mediated Phagocytosis. PLoS ONE. 9, e103620. https://doi.org/10.1371/journal.pone.0103620
  12. Lavine, M.D., Strand, M.R., 2002. Insect hemocytes and their role in immunity. Insect Biochem. Mol. Biol. 32, 1295-1309. https://doi.org/10.1016/S0965-1748(02)00092-9
  13. Lee, J., Hwang, S., Cho, S., 2016. Immune tolerance to an intestineadapted bacteria, Chryseobacterium sp., injected into the hemocoel of Protaetia brevitarsis seulensis. Sci. Rep. 6, 31722. https://doi.org/10.1038/srep31722
  14. Lemaitre, B., Hoffmann J., 2007. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 25, 697-743. https://doi.org/10.1146/annurev.immunol.25.022106.141615
  15. Lu, A., Zhang, Q., Zhang, I., Yang, B., Wu, K., Xie, W., Luan, Y., Ling, E., 2014. Insect prophenoloxidase: the view beyond immunity. Front Physiol. 5, 252.
  16. Michel, T., Reichhart, J., Hoffmann, J.A., Royet, J., 2001. Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nat. 414, 756-759. https://doi.org/10.1038/414756a
  17. Rooks, M.G., Garrett, W.S., 2016. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 16, 341-352. https://doi.org/10.1038/nri.2016.42
  18. Sajed, T., Marcu, A., Ramirez, M., Pon, A., Guo, A., Knox, C., Wilson, M., Grant, J., Djoumbou, Y., Wishart, D., 2015. ECMDB 2.0: A richer resource for understanding the biochemistry of E. coli. Nucleic Acids Res. 44, D495-501.
  19. Shelby, K.S., Popham, H.J., 2012. RNA-seq study of microbially induced hemocyte transcripts from larval Heliothis virescens (Lepidoptera: Noctuidae). Insects 3, 743-762. https://doi.org/10.3390/insects3030743
  20. Strand, M.R., 2008. The insect cellular immune response. Insect Sci. 15, 1-14. https://doi.org/10.1111/j.1744-7917.2008.00183.x
  21. Vlisidou, I., Wood, W., 2015. Drosophila blood cells and their role in immune responses. FEBS J. 282, 1368-1382. https://doi.org/10.1111/febs.13235