• Title/Summary/Keyword: Pathogenic Agents

Search Result 241, Processing Time 0.021 seconds

A Clinical Study of Deep Neck Infection (경부심부감염의 임상적 고찰)

  • 이시형;김상윤;남순열;김준모;유승주
    • Korean Journal of Bronchoesophagology
    • /
    • v.7 no.1
    • /
    • pp.34-39
    • /
    • 2001
  • Background and Objectives: Deep neck infections, which affect soft tissues and fascial compartments of the head and neck and their contents, have decreased after the develop ment of chemotherapeutic agents and antibiotics. However they may still result in significant morbidity and mortality despite the use of chemotherapeutic agents and antibiotics. Materials and Methods : A retrospective study was performed on 66 deep neck infections in patients admitted for diagnosis and treatment at Asan medical center from June 1994 to December 2000. Results : Age of the patients varied from 1 to 86-year-old and sex ratio of male to female was 1.2:1. Most frequently involved site was submandibular space (21.2%). Most common cause of infection was dental disease (28.8%). The isolated pathogenic organisms were Streptococcus species in 19 cases, Staphylococcus species in 7 cases, Klebsiella in 5 cases, mixed infection of Staphylococcus and Klebsiella in 3 cases and a case of Corynebacterium. 51 cases were treated surgically, 15 cases were medically. Mean duration of admission was 9.6 days in cases of single space infection, 17.5 days in multiple spaces, 8.1 days when the infection resulted in cellulitis, 13.4 days in abscess, 7.9 days when the infection treated medically and 13.4 days when treated surgically. Conclusion Early diagnosis and treatment is important to manage deep neck infection and the duration of admission was increased when the infection involved multiple spaces.

  • PDF

Current Status and Future Prospects of White Root Rot Management in Pear Orchards: A Review

  • Sawant, Shailesh S.;Choi, Eu Ddeum;Song, Janghoon;Seo, Ho-Jin
    • Research in Plant Disease
    • /
    • v.27 no.3
    • /
    • pp.91-98
    • /
    • 2021
  • The current social demand for organic, sustainable, and eco-friendly approaches for farming, while ensuring the health and productivity of crops is increasing rapidly. Biocontrol agents are applied to crops to ensure biological control of plant pathogens. Research on the biological control of white root rot disease caused by a soil-borne pathogen, Rosellinia necatrix, is limited in pears compared to that in apple and avocado. This pathogenic fungus has an extensive host range, and symptoms of this disease include rotting of roots, yellowing and falling of leaves, wilting, and finally tree death. The severity of the disease caused by R. necatrix, makes it the most harmful fungal pathogen infecting the economical fruit tree species, such as pears, and is one of the main limiting factors in pear farming, with devastating effects on plant health and yield. In addition to agronomic and cultural practices, growers use chemical treatments to control the disease. However, rising public concern about environmental pollution and harmful effects of chemicals in humans and animals has facilitated the search for novel and environmentally friendly disease control methods. This review will briefly summarize the current status of biocontrol agents, ecofriendly methods, and possible approaches to control disease in pear orchards.

Sclerotiorin: a Novel Azaphilone with Demonstrated Membrane Targeting and DNA Binding Activity against Methicillin-Resistant Staphylococcus aureus

  • Dasagrandhi, Chakradhar;Pandith, Anup;Imran, Khalid
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.4
    • /
    • pp.429-438
    • /
    • 2020
  • The emergence of multi-drug resistant, pathogenic methicillin-resistant Staphylococcus aureus (MRSA) is a threat to global health and has created a need for novel functional therapeutic agents. In this study, we evaluated the underlying mechanisms of the anti-MRSA effect of an azaphilone pigment, sclerotiorin (SCL) from Penicillium sclerotiorum. The antimicrobial activity of SCL was evaluated using agar disc diffusion, broth microdilution, time-kill assays and biophysical studies. SCL exhibits selective activity against Gram positive bacteria including MRSA (range, MIC = 128-1028 ㎍/ml) and exhibited rapid bactericidal action against MRSA with a > 4 log reduction in colony forming units within three hours of administration. Biophysical studies, using fluorescent probes and laser or electron microscopy, demonstrated a SCL dose-dependent alternation in membrane potential (62.6 ± 5.0.4% inhibition) and integrity (> 95 ± 2.3%), and the release of UV260 absorbing materials within 60 min (up to 3.2 fold increase, p < 0.01) of exposure. Further, SCL localized to the cytoplasm and hydrolyzed plasmid DNA. While in vitro checkerboard studies revealed that SCL potentiated the antimicrobial activity of topical antimicrobials such as polymixin, neomycin, and bacitracin (Fractional Inhibitory Concentration Index range, 0.26-0.37). Taken together these results suggest that SCL targets the membrane and DNA of MRSA to facilitate its anti-MRSA antimicrobial effect.

A Review on the Correlation between the Pathology of Alzheimer's Disease and microRNA

  • Kim, Soo-Jung;Cho, Hyun-Jeong
    • Biomedical Science Letters
    • /
    • v.27 no.4
    • /
    • pp.208-215
    • /
    • 2021
  • The purpose of this study was to explain the pathology of Alzheimer's disease (AD) and to investigate the correlation between AD and microRNA. AD is the most common type of dementia, accounting for about 80% of all types of dementia, causing dysfunction in various daily activities such as memory loss, cognitive impairment, and behavioral impairment. The typical pathology of AD is explained by the accumulation of beta-amyloid peptide plaques and neurofibrillary tangles containing hyperphosphorylated tau protein. On the other hand, microRNA is small non-coding RNA 22~23 nucleotides in length that binds to the 3' untranslated region of messenger RNA to inhibit gene expression. Many reports explain that microRNAs found in circulating biofluids are abundant in the central nervous system, are involved in the pathogenic mechanism of AD, and act as important factors for early diagnosis and therapeutic agents of AD. Therefore, this paper aims to clarify the correlation between AD and microRNA. In this review, the basic mechanism of miRNAs is described, and the regulation of miRNAs in the pathological processes of AD are highlighted. Furthermore, we suggest that miRNA-based system in development of therapeutic and diagnostic agents of AD can be a promising tool.

Structural Basis for the Antibiotic Resistance of Eukaryotic Isoleucyl-tRNA Synthetase

  • Chung, Scisung;Kim, Sulhee;Ryu, Sung Ho;Hwang, Kwang Yeon;Cho, Yunje
    • Molecules and Cells
    • /
    • v.43 no.4
    • /
    • pp.350-359
    • /
    • 2020
  • Pathogenic aminoacyl-tRNA synthetases (ARSs) are attractive targets for anti-infective agents because their catalytic active sites are different from those of human ARSs. Mupirocin is a topical antibiotic that specifically inhibits bacterial isoleucyl-tRNA synthetase (IleRS), resulting in a block to protein synthesis. Previous studies on Thermus thermophilus IleRS indicated that mupirocin-resistance of eukaryotic IleRS is primarily due to differences in two amino acids, His581 and Leu583, in the active site. However, without a eukaryotic IleRS structure, the structural basis for mupirocin-resistance of eukaryotic IleRS remains elusive. Herein, we determined the crystal structure of Candida albicans IleRS complexed with Ile-AMP at 2.9 A resolution. The largest difference between eukaryotic and prokaryotic IleRS enzymes is closure of the active site pocket by Phe55 in the HIGH loop; Arg410 in the CP core loop; and the second Lys in the KMSKR loop. The Ile-AMP product is lodged in a closed active site, which may restrict its release and thereby enhance catalytic efficiency. The compact active site also prevents the optimal positioning of the 9-hydroxynonanoic acid of mupirocin and plays a critical role in resistance of eukaryotic IleRS to anti-infective agents.

Enterotoxin Productivity and Antimicrobial Susceptibility of Bacillus cereus BY06 Isolated from Pigs with Diarrheal Disease (자돈 설사 분변에서 분리한 Bacillus cereus BY06의 장 독소 생성 및 항균제 감수성)

  • Wu, Wei-Jie;Rho, Youg-Hwan;Ahn, Byung-Yong
    • The Korean Journal of Food And Nutrition
    • /
    • v.27 no.2
    • /
    • pp.213-218
    • /
    • 2014
  • The enterotoxin production and antimicrobial susceptibility on hemolytic strains from stools of diarrheal pigs was investigated in this study. Through morphological observation, gyrB nucleotide sequence, and API kit analysis, the selected potential pathogenic strain BY06 was identified as Bacillus cereus. Because the characteristic of enterotoxin symptoms were widely caused by Bacillus cereus strains, a PCR test was carried out in order to check the enterotoxin genes (hblA) in this strain. According to the results, this strain was an enterotoxin positive strain containing the hblA gene. The minimum inhibitory concentrations of 10 different antimicrobial agents were screened by the agar dilution test, indicating that this strain was resistant to penicillin G and intermediate to erythromycin; however, it susceptible to cephalothin, vancomycin, clindamycin, fusidic acid, gentamicin, ciprofloxacin, tetracycline and rifampin. These results suggest that the B. cereus BY06 isolated from pig feces has a potential risk of producing enterotoxin and is resistant to penicillin G, but susceptible to various antimicrobial agents.

Gene Cloning and Characterization of MdeA, a Novel Multidrug Efflux Pump in Streptococcus mutans

  • Kim, Do Kyun;Kim, Kyoung Hoon;Cho, Eun Ji;Joo, Seoung-Je;Chung, Jung-Min;Son, Byoung Yil;Yum, Jong Hwa;Kim, Young-Man;Kwon, Hyun-Ju;Kim, Byung-Woo;Kim, Tae Hoon;Lee, Eun-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.3
    • /
    • pp.430-435
    • /
    • 2013
  • Multidrug resistance, especially multidrug efflux mechanisms that extrude structurally unrelated cytotoxic compounds from the cell by multidrug transporters, is a serious problem and one of the main reasons for the failure of therapeutic treatment of infections by pathogenic microorganisms as well as of cancer cells. Streptococcus mutans is considered one of the primary causative agents of dental caries and periodontal disease, which comprise the most common oral diseases. A fragment of chromosomal DNA from S. mutans KCTC3065 was cloned using Escherichia coli KAM32 as host cells lacking major multidrug efflux pumps. Although E. coli KAM32 cells were very sensitive to many antimicrobial agents, the transformed cells harboring a recombinant plasmid became resistant to several structurally unrelated antimicrobial agents such as tetracycline, kanamycin, rhodamin 6G, ampicillin, acriflavine, ethidium bromide, and tetraphenylphosphonium chloride. This suggested that the cloned DNA fragment carries a gene encoding a multidrug efflux pump. Among 49 of the multidrug-resistant transformants, we report the functional gene cloning and characterization of the function of one multidrug efflux pump, namely MdeA from S. mutans, which was expressed in E. coli KAM32. Judging from the structural and biochemical properties, we concluded that MdeA is the first cloned and characterized multidrug efflux pump using the proton motive force as the energy for efflux drugs.

Integrated Management of Foot Rot of Lentil Using Biocontrol Agents under Field Condition

  • Hannan, M.A.;Hasan, M.M.;Hossain, I.;Rahman, S.M.E.;Ismail, Alhazmi Mohammed;Oh, Deog-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.7
    • /
    • pp.883-888
    • /
    • 2012
  • The efficacy of cowdung, Bangladesh Institute of Nuclear Agriculture (BINA)-biofertilizer, and Bangladesh Agricultural University (BAU)-biofungicide, alone or in combination, was evaluated for controlling foot rot disease of lentil. The results exhibited that BINA-biofertilizer and BAU-biofungicide (peat soil-based Rhizobium leguminosarum and black gram bran-based Trichoderma harzianum) are compatible and have combined effects in controlling the pathogenic fungi Fusarium oxysporum and Sclerotium rolfsii, which cause the root rot of lentil. Cowdung mixing with soil (at 5 t/ha) during final land preparation and seed coating with BINA-biofertilizer and BAU-biofungicide (at 2.5% of seed weight) before sowing recorded 81.50% field emergence of lentil, which showed up to 19.85% higher field emergence over the control. Post-emergence deaths of plants due to foot rot disease were significantly reduced after combined seed treatment with BINA-biofertilizer and BAU-biofungicide. Among the treatments used, only BAU-biofungicide as the seed treating agent resulted in higher plant stand (84.82%). Use of BINA-biofertilizer and BAU-biofungicide as seed treating biocontrol agents and application of cowdung in the soil as an organic source of nutrient resulted in higher shoot and root lengths, and dry shoot and root weights of lentil. BINA-biofertilizer significantly increased the number of nodules per plant and nodules weight of lentil. Seeds treating with BAU-biofungicide and BINA-biofertilizer and soil amendment with cowdung increased the biomass production of lentil up to 75.56% over the control.

The distribution and antimicrobial susceptibility of pathogenic microorganisms isolated from chicken slaughtering and processing procedure (닭 도계 및 가공공정 중 유해미생물의 분포와 항생제 감수성)

  • Seol, Kuk-Hwan;Kim, Ki Hyun;Jo, Su-Mi;Kim, Young Hwa;Kim, Hyun-Wook;Ham, Jun-Sang
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.1
    • /
    • pp.29-35
    • /
    • 2015
  • This study was performed to analyze the distribution and antimicrobial resistance of pathogenic microorganisms isolated from the carcass and environments of chicken processing plant located in Gyeonggi province from October to November in 2010. Chicken slaughterhouse was visited 3 times and totally 40 samples were collected from chicken carcass before and after washing (n=14), chicken cuts (n=7), cooling water (n=8), brine (n=2), cutting knives (n=7) and working plate (n=2). Whole-chicken rinsing technique (for chicken carcasses) and swab technique (for working plate and knives) were used to analyze the distribution of pathogenic microorganisms. In addition, brine and chilling water from storage tanks were gathered using sterilized tubes and used as samples. The matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) for whole cell fingerprinting in combination with a dedicated bioinformatic software tool was used to identify the isolated microorganisms. The pathogenic microorganisms, such as Bacillus cereus (n=8) and Staphylococcus aureus (n=9), were isolated form the chicken processing process (chicken carcasses of before and after chilling, chicken cuts, and working plate). The antimicrobial susceptibility of those isolated microorganisms was analyzed using 21 antimicrobial agents. In the case of B. cereus, it showed 100% of resistance to subclasses of penicillins and peptides, and it also resistant to cephalothin, a member of critically important antimicrobials (CIA), however there was no resistance (100% susceptible) to vancomycin and chloramphenicol. S. aureus showed 100% resistance to subclasses of peptides and some of penicillins (penicillin and oxacillin), however, it showed 100% susceptibility to cephalosporins (cefazolin and cephalothin). All of the tested pathogens showed multi drug resistance (MDR) more than 4 subclasses and one of B. cereus and S. aureus showed resistance to 9 subclasses. After the ban on using the antimicrobials in animal feed in July 2011, there would be some change in microbial distribution and antimicrobial resistance, and it still has a need to be analyzed.

Virulence factors and multi-drug resistant patterns of pathogenic Escherichia coli isolates from diarrheic calves in Jeonbuk (전북지역 송아지 설사 유래 병원성 대장균의 병원성 인자 및 다제 내성 패턴)

  • Kwak, Kil-Han;Kim, Seon-Min;Yu, Yeong-Ju;Yu, Jeong-Hee;Lim, Mi-Na;Jang, Yu-Jeong;Hur, Jin
    • Korean Journal of Veterinary Service
    • /
    • v.44 no.4
    • /
    • pp.271-281
    • /
    • 2021
  • Pathogenic Escherichia coli (E. coli) is one among the most important agents of diarrhea in calves. From January to December 2021, 108 isolates from feces of calves with diarrhea were investigated for enterotoxigenic E. coli (ETEC), enteropathogenic E. coli (EPEC), shiga toxin-producing E. coli (STEC), enteroaggregative E. coli (EAEC), and enteroinvasive E. coli (EIEC) using real-time PCR. In addition, the genes for F5, F17 and F41 fimbriae were detected by PCR. The most frequently isolated pathotypes were EPEC/STEC (29 isolates), and ETEC/EPEC/STEC (29 isolates). ETEC/EPEC, and ETEC/STEC were also found in 10 isolates. EPEC, STEC, and ETEC were detected in 13, 11, and 6 respectively. EAEC, and EIEC was not detected. Antimicrobial resistance test was carried out by agar disc diffusion method with 14 antimicrobials. Among 108 pathogenic E. coli isolates, 107 isolates were resistant to at least one of 14 antibiotics used in this study, 99 (91.7%) were resistant to two or more antimicrobials, and a single remarkable isolate was resistant to 14 antimicrobials. The isolates were primarily resistant to penicillins, streptomycin, tetracycline, ceftiofur, Trimethoprim/sulfamethoxazole, Kanamycin, and Ciprofloxacin. The high rate of resistance in pathogenic E. coli, sometimes to multiple drugs, may complicate future options for treating human infections. These results may bu used for diagnosis and therpeitic purposes in calves with diarrhea.