DOI QR코드

DOI QR Code

Structural Basis for the Antibiotic Resistance of Eukaryotic Isoleucyl-tRNA Synthetase

  • Chung, Scisung (Department of Life Sciences, Pohang University of Science and Technology) ;
  • Kim, Sulhee (Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Ryu, Sung Ho (Department of Life Sciences, Pohang University of Science and Technology) ;
  • Hwang, Kwang Yeon (Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Cho, Yunje (Department of Life Sciences, Pohang University of Science and Technology)
  • Received : 2019.11.25
  • Accepted : 2019.12.14
  • Published : 2020.04.30

Abstract

Pathogenic aminoacyl-tRNA synthetases (ARSs) are attractive targets for anti-infective agents because their catalytic active sites are different from those of human ARSs. Mupirocin is a topical antibiotic that specifically inhibits bacterial isoleucyl-tRNA synthetase (IleRS), resulting in a block to protein synthesis. Previous studies on Thermus thermophilus IleRS indicated that mupirocin-resistance of eukaryotic IleRS is primarily due to differences in two amino acids, His581 and Leu583, in the active site. However, without a eukaryotic IleRS structure, the structural basis for mupirocin-resistance of eukaryotic IleRS remains elusive. Herein, we determined the crystal structure of Candida albicans IleRS complexed with Ile-AMP at 2.9 A resolution. The largest difference between eukaryotic and prokaryotic IleRS enzymes is closure of the active site pocket by Phe55 in the HIGH loop; Arg410 in the CP core loop; and the second Lys in the KMSKR loop. The Ile-AMP product is lodged in a closed active site, which may restrict its release and thereby enhance catalytic efficiency. The compact active site also prevents the optimal positioning of the 9-hydroxynonanoic acid of mupirocin and plays a critical role in resistance of eukaryotic IleRS to anti-infective agents.

Keywords

References

  1. Adams, P.D., Afonine, P.V., Bunkoczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Hung, L.W., Kapral, G.J., Grosse-Kunstleve, R.W., et al. (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D. Biol. Crystallogr. 66, 213-221. https://doi.org/10.1107/S0907444909052925
  2. Antonellis, A. and Green, E.D. (2008). The role of aminoacyl-tRNA synthetases in genetic diseases. Annu. Rev. Genomics Hum. Genet. 9, 87-107. https://doi.org/10.1146/annurev.genom.9.081307.164204
  3. Brown, J.R. and Doolittle, W.F. (1995). Root of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications. Proc. Natl. Acad. Sci. U. S. A. 92, 2441-2445. https://doi.org/10.1073/pnas.92.7.2441
  4. Chen, V.B., Arendall, W.B., III, Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral, G.J., Murray, L.W., Richardson, J.S., and Richardson, D.C. (2010). MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D. Biol. Crystallogr. 66, 12-21. https://doi.org/10.1107/S0907444909042073
  5. Cusack, S., Yaremchuk, A., and Tukalo, M. (2000). The 2 A crystal structure of leucyl-tRNA synthetase and its complex with a leucyl-adenylate analogue. EMBO J. 19, 2351-2361. https://doi.org/10.1093/emboj/19.10.2351
  6. Delarue, M. (1995). Aminoacyl-tRNA synthetases. Curr. Opin. Struct. Biol. 5, 48-55. https://doi.org/10.1016/0959-440X(95)80008-O
  7. Duhr, S. and Braun, D. (2006). Why molecules move along a temperature gradient. Proc. Natl. Acad. Sci. U. S. A. 103, 19678-19682. https://doi.org/10.1073/pnas.0603873103
  8. Emsley, P. and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr. D. Biol. Crystallogr. 60, 2126-2132. https://doi.org/10.1107/S0907444904019158
  9. Fersht, A.R. and Dingwall, C. (1979). Evidence for the double-sieve editing mechanism in protein synthesis. Steric exclusion of isoleucine by valyltRNA synthetases. Biochemistry 18, 2627-2631. https://doi.org/10.1021/bi00579a030
  10. Fukai, S., Nureki, O., Sekine, S., Shimada, A., Tao, J., Vassylyev, D.G., and Yokoyama, S. (2000). Structural basis for double-sieve discrimination of L-valine from L-isoleucine and L-threonine by the complex of tRNA(Val) and valyl-tRNA synthetase. Cell 103, 793-803. https://doi.org/10.1016/S0092-8674(00)00182-3
  11. Fukunaga, R. and Yokoyama, S. (2006). Structural basis for substrate recognition by the editing domain of isoleucyl-tRNA synthetase. J. Mol. Biol. 359, 901-912. https://doi.org/10.1016/j.jmb.2006.04.025
  12. Hughes, J. and Mellows, G. (1978). Inhibition of isoleucyl-transfer ribonucleic acid synthetase in Escherichia coli by pseudomonic acid. Biochem. J. 176, 305-318. https://doi.org/10.1042/bj1760305
  13. Hughes, J. and Mellows, G. (1980). Interaction of pseudomonic acid A with Escherichia coli B isoleucyl-tRNA synthetase. Biochem. J. 191, 209-219. https://doi.org/10.1042/bj1910209
  14. Karplus, P.A. and Diederichs, K. (2012). Linking crystallographic model and data quality. Science 336, 1030-1033. https://doi.org/10.1126/science.1218231
  15. Kuntz, I.D. (1992). Structure-based strategies for drug design and discovery. Science 257, 1078-1082. https://doi.org/10.1126/science.257.5073.1078
  16. Kwon, N.H., Fox, P.L., and Kim, S. (2019). Aminoacyl-tRNA synthetases as therapeutic targets. Nat. Rev. Drug Discov. 18, 629-650. https://doi.org/10.1038/s41573-019-0026-3
  17. Ling, J., Reynolds, N., and Ibba, M. (2009). Aminoacyl-tRNA synthesis and translational quality control. Annu. Rev. Microbiol. 63, 61-78. https://doi.org/10.1146/annurev.micro.091208.073210
  18. Nakama, T., Nureki, O., and Yokoyama, S. (2001). Structural basis for the recognition of isoleucyl-adenylate and an antibiotic, mupirocin, by isoleucyl-tRNA synthetase. J. Biol. Chem. 276, 47387-47393. https://doi.org/10.1074/jbc.M109089200
  19. Nureki, O., Vassylyev, D.G., Tateno, M., Shimada, A., Nakama, T., Fukai, S., Konno, M., Hendrickson, T.L., Schimmel, P., and Yokoyama, S. (1998). Enzyme structure with two catalytic sites for double-sieve selection of substrate. Science 280, 578-582. https://doi.org/10.1126/science.280.5363.578
  20. Otwinowski, Z. and Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307-326. https://doi.org/10.1016/S0076-6879(97)76066-X
  21. Pei, J., Kim, B.H., and Grishin, N.V. (2008). PROMALS3D: a tool for multiple protein sequence and structure alignments. Nucleic Acids Res. 36, 2295-2300. https://doi.org/10.1093/nar/gkn072
  22. Ribas de Pouplana, L. and Schimmel, P. (2001). Aminoacyl-tRNA synthetases: potential markers of genetic code development. Trends Biochem. Sci. 26, 591-596. https://doi.org/10.1016/S0968-0004(01)01932-6
  23. Schimmel, P. (2018). The emerging complexity of the tRNA world: mammalian tRNAs beyond protein synthesis. Nat. Rev. Mol. Cell Biol. 19, 45-58. https://doi.org/10.1038/nrm.2017.77
  24. Seidel, S.A., Dijkman, P.M., Lea, W.A., van den Bogaart, G., Jerabek- Willemsen, M., Lazic, A., Joseph, J.S., Srinivasan, P., Baaske, P., Simeonov, A., et al. (2013). Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions. Methods 59, 301-315. https://doi.org/10.1016/j.ymeth.2012.12.005
  25. Silvian, L.F., Wang, J., and Steitz, T.A. (1999). Insights into editing from an ile-tRNA synthetase structure with tRNAile and mupirocin. Science 285, 1074-1077. https://doi.org/10.1126/science.285.5430.1074
  26. Sutherland, R., Boon, R.J., Griffin, K.E., Masters, P.J., Slocombe, B., and White, A.R. (1985). Antibacterial activity of mupirocin (pseudomonic acid), a new antibiotic for topical use. Antimicrob. Agents Chemother. 27, 495-498. https://doi.org/10.1128/AAC.27.4.495
  27. Yao, P. and Fox, P.L. (2013). Aminoacyl-tRNA synthetases in medicine and disease. EMBO Mol. Med. 5, 332-343. https://doi.org/10.1002/emmm.201100626

Cited by

  1. Inhibition of Isoleucyl-tRNA Synthetase by the Hybrid Antibiotic Thiomarinol vol.143, pp.31, 2020, https://doi.org/10.1021/jacs.1c02622