DOI QR코드

DOI QR Code

Dynamic Changes in the Bridging Collaterals of the Basal Ganglia Circuitry Control Stress-Related Behaviors in Mice

  • Lee, Young (Department of Life Sciences, Korea University) ;
  • Han, Na-Eun (Department of Life Sciences, Korea University) ;
  • Kim, Wonju (Department of Life Sciences, Korea University) ;
  • Kim, Jae Gon (Department of Life Sciences, Korea University) ;
  • Lee, In Bum (Department of Life Sciences, Korea University) ;
  • Choi, Su Jeong (Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry) ;
  • Chun, Heejung (Cognitive Glioscience Group, Center for Cognition and Sociality, Institute for Basic Science (IBS)) ;
  • Seo, Misun (Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST)) ;
  • Lee, C. Justin (Cognitive Glioscience Group, Center for Cognition and Sociality, Institute for Basic Science (IBS)) ;
  • Koh, Hae-Young (Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST)) ;
  • Kim, Joung-Hun (Department of Life Sciences, Pohang University of Science and Technology (POSTECH)) ;
  • Baik, Ja-Hyun (Department of Life Sciences, Korea University) ;
  • Bear, Mark F. (The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology) ;
  • Choi, Se-Young (Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry) ;
  • Yoon, Bong-June (Department of Life Sciences, Korea University)
  • Received : 2019.11.19
  • Accepted : 2019.12.17
  • Published : 2020.04.30

Abstract

The basal ganglia network has been implicated in the control of adaptive behavior, possibly by integrating motor learning and motivational processes. Both positive and negative reinforcement appear to shape our behavioral adaptation by modulating the function of the basal ganglia. Here, we examined a transgenic mouse line (G2CT) in which synaptic transmissions onto the medium spiny neurons (MSNs) of the basal ganglia are depressed. We found that the level of collaterals from direct pathway MSNs in the external segment of the globus pallidus (GPe) ('bridging collaterals') was decreased in these mice, and this was accompanied by behavioral inhibition under stress. Furthermore, additional manipulations that could further decrease or restore the level of the bridging collaterals resulted in an increase in behavioral inhibition or active behavior in the G2CT mice, respectively. Collectively, our data indicate that the striatum of the basal ganglia network integrates negative emotions and controls appropriate coping responses in which the bridging collateral connections in the GPe play a critical regulatory role.

Keywords

References

  1. Abdi, A., Mallet, N., Mohamed, F.Y., Sharott, A., Dodson, P.D., Nakamura, K.C., Suri, S., Avery, S.V., Larvin, J.T., Garas, F.N., et al. (2015). Prototypic and arkypallidal neurons in the dopamine-intact external globus pallidus. J. Neurosci. 35, 6667-6688. https://doi.org/10.1523/JNEUROSCI.4662-14.2015
  2. Albin, R.L., Young, A.B., and Penney, J.B. (1989). The functional anatomy of basal ganglia disorders. Trends Neurosci. 12, 366-375. https://doi.org/10.1016/0166-2236(89)90074-X
  3. Alexander, G.E., DeLong, M.R., and Strick, P.L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357-381. https://doi.org/10.1146/annurev.ne.09.030186.002041
  4. Bateup, H.S., Santini, E., Shen, W., Birnbaum, S., Valjent, E., Surmeier, D.J., Fisone, G., Nestler, E.J., and Greengard, P. (2010). Distinct subclasses of medium spiny neurons differentially regulate striatal motor behaviors. Proc. Natl. Acad. Sci. U. S. A. 107, 14845-14850. https://doi.org/10.1073/pnas.1009874107
  5. Bhatia, K.P. and Marsden, C.D. (1994). The behavioural and motor consequences of focal lesions of the basal ganglia in man. Brain 117, 859-876. https://doi.org/10.1093/brain/117.4.859
  6. Carretie, L., Rios, M., de la Gandara, B.S., Tapia, M., Albert, J., Lopez-Martin, S., and Alvarez-Linera, J. (2009). The striatum beyond reward: caudate responds intensely to unpleasant pictures. Neuroscience 164, 1615-1622. https://doi.org/10.1016/j.neuroscience.2009.09.031
  7. Carvalho Poyraz, F., Holzner, E., Bailey, M.R., Meszaros, J., Kenney, L., Kheirbek, M.A., Balsam, P.D., and Kellendonk, C. (2016). Decreasing striatopallidal pathway function enhances motivation by energizing the initiation of goal-directed action. J. Neurosci. 36, 5988-6001. https://doi.org/10.1523/JNEUROSCI.0444-16.2016
  8. Cazorla, M., de Carvalho, F.D., Chohan, M.O., Shegda, M., Chuhma, N., Rayport, S., Ahmari, S.E., Moore, H., and Kellendonk, C. (2014). Dopamine D2 receptors regulate the anatomical and functional balance of basal ganglia circuitry. Neuron 81, 153-164. https://doi.org/10.1016/j.neuron.2013.10.041
  9. Cazorla, M., Shegda, M., Ramesh, B., Harrison, N.L., and Kellendonk, C. (2012). Striatal D2 receptors regulate dendritic morphology of medium spiny neurons via Kir2 channels. J. Neurosci. 32, 2398-2409. https://doi.org/10.1523/JNEUROSCI.6056-11.2012
  10. Choi, T.Y., Lee, S.H., Kim, Y.J., Bae, J.R., Lee, K.M., Jo, Y., Kim, S.J., Lee, A.R., Choi, S., Choi, L.M., et al. (2018). Cereblon maintains synaptic and cognitive function by regulating BK channel. J. Neurosci. 38, 3571-3583. https://doi.org/10.1523/JNEUROSCI.2081-17.2018
  11. Cui, G.H., Jun, S.B., Jin, X., Pham, M.D., Vogel, S.S., Lovinger, D.M., and Costa, R.M. (2013). Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 494, 238-242. https://doi.org/10.1038/nature11846
  12. Deacon, R.M. (2006). Digging and marble burying in mice: simple methods for in vivo identification of biological impacts. Nat. Protoc. 1, 122-124. https://doi.org/10.1038/nprot.2006.20
  13. DeLong, M.R. (1990). Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 13, 281-285. https://doi.org/10.1016/0166-2236(90)90110-V
  14. Dolan, R.J. and Dayan, P. (2013). Goals and habits in the brain. Neuron 80, 312-325. https://doi.org/10.1016/j.neuron.2013.09.007
  15. Ferguson, S.M., Eskenazi, D., Ishikawa, M., Wanat, M.J., Phillips, P.E., Dong, Y., Roth, B.L., and Neumaier, J.F. (2011). Transient neuronal inhibition reveals opposing roles of indirect and direct pathways in sensitization. Nat. Neurosci. 14, 22-24. https://doi.org/10.1038/nn.2703
  16. Fujiyama, F., Sohn, J., Nakano, T., Furuta, T., Nakamura, K.C., Matsuda, W., and Kaneko, T. (2011). Exclusive and common targets of neostriatofugal projections of rat striosome neurons: a single neuron-tracing study using a viral vector. Eur. J. Neurosci. 33, 668-677. https://doi.org/10.1111/j.1460-9568.2010.07564.x
  17. Gerfen, C.R., Engber, T.M., Mahan, L.C., Susel, Z., Chsase, T.N., Monsma, F.J., Jr., and Sibley, D.R. (1990). D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250, 1429-1432. https://doi.org/10.1126/science.2147780
  18. Graybiel, A.M. (2000). The basal ganglia. Curr. Biol. 10, R509-R511. https://doi.org/10.1016/S0960-9822(00)00593-5
  19. Guez-Barber, D., Fanous, S., Harvey, B.K., Zhang, Y., Lehrmann, E., Becker, K.G., Picciotto, M.R., and Hope, B.T. (2012). FACS purification of immunolabeled cell types from adult rat brain. J. Neurosci. Methods 203, 10-18. https://doi.org/10.1016/j.jneumeth.2011.08.045
  20. Hikida, T., Kimura, K., Wada, N., Funabiki, K., and Nakanishi, S. (2010). Distinct roles of synaptic transmission in direct and indirect striatal pathways to reward and aversive behavior. Neuron 66, 896-907. https://doi.org/10.1016/j.neuron.2010.05.011
  21. Hume, R.I., Dingledine, R., and Heinemann, S.F. (1991). Identification of a site in glutamate receptor subunits that controls calcium permeability. Science 253, 1028-1031. https://doi.org/10.1126/science.1653450
  22. Jin, X., Tecuapetla, F., and Costa, R.M. (2014). Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nat. Neurosci. 17, 423-430. https://doi.org/10.1038/nn.3632
  23. Kawaguchi, Y., Wilson, C.J., and Emson, P.C. (1990). Projection subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin. J. Neurosci. 10, 3421-3438. https://doi.org/10.1523/JNEUROSCI.10-10-03421.1990
  24. Kim, H.F., Amita, H., and Hikosaka, O. (2017a). Indirect pathway of caudal basal ganglia for rejection of valueless visual objects. Neuron 94, 920-930. e3. https://doi.org/10.1016/j.neuron.2017.04.033
  25. Kim, H.J., Lee, J.H., Yun, K., and Kim, J.H. (2017b). Alterations in striatal circuits underlying addiction-like behaviors. Mol. Cells 40, 379-385. https://doi.org/10.14348/molcells.2017.0088
  26. Kim, J., Lee, S., Kang, S., Jeon, T.I., Kang, M.J., Lee, T.H., Kim, Y.S., Kim, K.S., Im, H.I., and Moon, C. (2018). Regulator of G-protein signaling 4 (RGS4) controls morphine reward by glutamate receptor activation in the nucleus accumbens of mouse brain. Mol. Cells 41, 454-464. https://doi.org/10.14348/MOLCELLS.2018.0023
  27. Kim, W., Im, M.J., Park, C.H., Lee, C.J., Choi, S., and Yoon, B.J. (2013). Remodeling of the dendritic structure of the striatal medium spiny neurons accompanies behavioral recovery in a mouse model of Parkinson's disease. Neurosci. Lett. 557 Pt B, 95-100. https://doi.org/10.1016/j.neulet.2013.10.049
  28. Kozorovitskiy, Y., Saunders, A., Johnson, C.A., Lowell, B.B., and Sabatini, B.L. (2012). Recurrent network activity drives striatal synaptogenesis. Nature 485, 646-650. https://doi.org/10.1038/nature11052
  29. Kravitz, A.V., Freeze, B.S., Parker, P.R.L., Kay, K., Thwin, M.T., Deisseroth, K., and Kreitzer, A.C. (2010). Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466, 622-626. https://doi.org/10.1038/nature09159
  30. Kravitz, A.V., Tye, L.D., and Kreitzer, A.C. (2012). Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat. Neurosci. 15, 816-818. https://doi.org/10.1038/nn.3100
  31. Kreitzer, A.C. and Malenka, R.C. (2007). Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson's disease models. Nature 445, 643-647. https://doi.org/10.1038/nature05506
  32. Lambeth, C.R., White, L.J., Johnston, R.E., and de Silva, A.M. (2005). Flow cytometry-based assay for titrating dengue virus. J. Clin. Microbiol. 43, 3267-3272. https://doi.org/10.1128/JCM.43.7.3267-3272.2005
  33. LeDoux, J. (2012). Rethinking the emotional brain. Neuron 73, 653-676. https://doi.org/10.1016/j.neuron.2012.02.004
  34. Lee, S.H., Liu, L.D., Wang, Y.T., and Sheng, M. (2002). Clathrin adaptor AP2 and NSF interact with overlapping sites of GluR2 and play distinct roles in AMPA receptor trafficking and hippocampal LTD. Neuron 36, 661-674. https://doi.org/10.1016/S0896-6273(02)01024-3
  35. Lee, Y., Lee, H., Kim, H.W., and Yoon, B.J. (2015). Altered trafficking of alphaamino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors (AMPARs) in the striatum leads to behavioral changes in emotional responses. Neurosci. Lett. 584, 103-108. https://doi.org/10.1016/j.neulet.2014.10.023
  36. Liu, S.J. and Zukin, R.S. (2007). Ca2+-permeable AMPA receptors in synaptic plasticity and neuronal death. Trends Neurosci. 30, 126-134. https://doi.org/10.1016/j.tins.2007.01.006
  37. Lobo, M.K., Covington, H.E., 3rd., Chaudhury, D., Friedman, A.K., Sun, H., Damez-Werno, D., Dietz, D.M., Zaman, S., Koo, J.W., Kennedy, P.J., et al. (2010). Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science 330, 385-390. https://doi.org/10.1126/science.1188472
  38. Manvich, D.F., Webster, K.A., Foster, S.L., Farrell, M.S., Ritchie, J.C., Porter, J.H., and Weinshenker, D. (2018). The DREADD agonist clozapine N-oxide (CNO) is reverse-metabolized to clozapine and produces clozapine-like interoceptive stimulus effects in rats and mice. Sci. Rep. 8, 3840. https://doi.org/10.1038/s41598-018-22116-z
  39. Mink, J.W. (1996). The basal ganglia: focused selection and inhibition of competing motor programs. Prog. Neurobiol. 50, 381-425. https://doi.org/10.1016/S0301-0082(96)00042-1
  40. Rodriguez, A., Ehlenberger, D.B., Dickstein, D.L., Hof, P.R., and Wearne, S.L. (2008). Automated three-dimensional detection and shape classification of dendritic spines from fluorescence microscopy images. PLoS One 3, e1997. https://doi.org/10.1371/journal.pone.0001997
  41. Roseberry, T.K., Lee, A.M., Lalive, A.L., Wilbrecht, L., Bonci, A., and Kreitzer, A.C. (2016). Cell-type-specific control of brainstem locomotor circuits by basal ganglia. Cell 164, 526-537. https://doi.org/10.1016/j.cell.2015.12.037
  42. Shen, W.X., Flajolet, M., Greengard, P., and Surmeier, D.J. (2008). Dichotomous dopaminergic control of striatal synaptic plasticity. Science 321, 848-851. https://doi.org/10.1126/science.1160575
  43. Stroobants, S., Gantois, I., Pooters, T., and D'Hooge, R. (2013). Increased gait variability in mice with small cerebellar cortex lesions and normal rotarod performance. Behav. Brain Res. 241, 32-37. https://doi.org/10.1016/j.bbr.2012.11.034
  44. Taverna, S., Ilijic, E., and Surmeier, D.J. (2008). Recurrent collateral connections of striatal medium spiny neurons are disrupted in models of Parkinson's disease. J. Neurosci. 28, 5504-5512. https://doi.org/10.1523/JNEUROSCI.5493-07.2008
  45. Tecuapetla, F., Jin, X., Lima, S.Q., and Costa, R.M. (2016). Complementary contributions of striatal projection pathways to action initiation and execution. Cell 166, 703-715. https://doi.org/10.1016/j.cell.2016.06.032
  46. Tecuapetla, F., Koos, T., Tepper, J.M., Kabbani, N., and Yeckel, M.F. (2009). Differential dopaminergic modulation of neostriatal synaptic connections of striatopallidal axon collaterals. J. Neurosci. 29, 8977-8990. https://doi.org/10.1523/JNEUROSCI.6145-08.2009
  47. Tecuapetla, F., Matias, S., Dugue, G.P., Mainen, Z.F., and Costa, R.M. (2014). Balanced activity in basal ganglia projection pathways is critical for contraversive movements. Nat. Commun. 5, 4315. https://doi.org/10.1038/ncomms5315
  48. Wu, Y., Richard, S., and Parent, A. (2000). The organization of the striatal output system: a single-cell juxtacellular labeling study in the rat. Neurosci. Res. 38, 49-62. https://doi.org/10.1016/S0168-0102(00)00140-1
  49. Yin, H.H., Mulcare, S.P., Hilario, M.R.F., Clouse, E., Holloway, T., Davis, M.I., Hansson, A.C., Lovinger, D.M., and Costa, R.M. (2009). Dynamic reorganization of striatal circuits during the acquisition and consolidation of a skill. Nat. Neurosci. 12, 333-341. https://doi.org/10.1038/nn.2261
  50. Yoon, B.J., Smith, G.B., Heynen, A.J., Neve, R.L., and Bear, M.F. (2009). Essential role for a long-term depression mechanism in ocular dominance plasticity. Proc. Natl. Acad. Sci. U. S. A. 106, 9860-9865. https://doi.org/10.1073/pnas.0901305106