• Title/Summary/Keyword: Path search algorithm

Search Result 365, Processing Time 0.028 seconds

Reducing the Search Space for Pathfinding in Navigation Meshes by Using Visibility Tests

  • Kim, Hyun-Gil;Yu, Kyeon-Ah;Kim, Jun-Tae
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.867-873
    • /
    • 2011
  • A navigation mesh (NavMesh) is a suitable tool for the representation of a three-dimensional game world. A NavMesh consists of convex polygons covering free space, so the path can be found reliably without detecting collision with obstacles. The main disadvantage of a NavMesh is the huge state space. When the $A^*$ algorithm is applied to polygonal meshes for detailed terrain representation, the pathfinding can be inefficient due to the many states to be searched. In this paper, we propose a method to reduce the number of states searched by using visibility tests to achieve fast searching even on a detailed terrain with a large number of polygons. Our algorithm finds the visible vertices of the obstacles from the critical states and uses the heuristic function of $A^*$, defined as the distance to the goal through such visible vertices. The results show that the number of searched states can be substantially reduced compared to the $A^*$ search with a straight-line distance heuristic.

Measure of Effectiveness for Detection and Cumulative Detection Probability (탐지효과도 및 누적탐지확률)

  • Cho, Jung-Hong;Kim, Jea Soo;Lim, Jun-Seok;Park, Ji-Sung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.601-614
    • /
    • 2012
  • Since the optimized use of sonar systems available for detection is a very practical problem for a given ocean environment, the measure of mission achievability is needed for operating the sonar system efficiently. In this paper, a theory on Measure Of Effectiveness(MOE) for specific mission such as detection is described as the measure of mission achievability, and a recursive Cumulative Detection Probability(CDP) algorithm is found to be most efficient from comparing three CDP algorithms for discrete glimpses search to reduce computation time and memory for complicated scenarios. The three CDPs which are MOE for sonar-maneuver pattern are calculated as time evolves for comparison, based on three different formula depending on the assumptions as follows; dependent or independent glimpses, unimodal or non-unimodal distribution of Probability of Detection(PD) as a function of observation time interval for detection. The proposed CDP algorithm which is made from unimodal formula is verified and applied to OASPP(Optimal Acoustic Search Path Planning) with complicated scenarios.

A Study on the Cutting Path Optimization using Improved Genetic Algorithm (개선된 유전자 알고리즘을 이용한 부재 절단경로 최적화에 관한 연구)

  • Y.K. Han;C.D. Jang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.3
    • /
    • pp.90-98
    • /
    • 2000
  • Nesting and cutting path optimization have a great effect on price competitions and improvement of productivity in various industries such as the shipbuilding, the auto, the clothing, and so on. But the theoretical approach on the development of cutting path optimization algorithm, which can be applied effectively in the shipbuilding, has not been performed enough because parts are so complex and various. In this study, a new solution has been presented to solve the cutting path problem in 2-D cutting by using improved genetic algorithm. The presented optimization algorithm can search not only the cutting sequence of parts but also the position of piercing point by applying the effective neighborhood solution generating method

  • PDF

Algorithms on layout design for overhead facility (천장형 설비의 배치 설계를 위한 해법의 개발)

  • Yang, Byoung-Hak
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.1
    • /
    • pp.133-142
    • /
    • 2011
  • Overhead facility design problem(OFDP) is one of the shortest rectilinear flow network problem(SRFNP)[4]. Genetic algorithm(GA), artificial immune system(AIS), population management genetic algorithm (PM) and greedy randomized adaptive search procedures (GRASP) were introduced to solve OFDP. A path matrix formed individual was designed to represent rectilinear path between each facility. An exchange crossover operator and an exchange mutation operator were introduced for OFDP. Computer programs for each algorithm were constructed to evaluate the performance of algorithms. Computation experiments were performed on the quality of solution and calculations time by using randomly generated test problems. The average object value of PM was the best of among four algorithms. The quality of solutions of AIS for the big sized problem were better than those of GA and GRASP. The solution quality of GRASP was the worst among four algorithms. Experimental results showed that the calculations time of GRASP was faster than any other algorithm. GA and PM had shown similar performance on calculation time and the calculation time of AIS was the worst.

Smart Synthetic Path Search System for Prevention of Hazardous Chemical Accidents and Analysis of Reaction Risk (반응 위험성분석 및 사고방지를 위한 스마트 합성경로 탐색시스템)

  • Jeong, Joonsoo;Kim, Chang Won;Kwak, Dongho;Shin, Dongil
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.781-789
    • /
    • 2019
  • There are frequent accidents by chemicals during laboratory experiments and pilot plant and reactor operations. It is necessary to find and comprehend relevant information to prevent accidents before starting synthesis experiments. In the process design stage, reaction information is also necessary to prevent runaway reactions. Although there are various sources available for synthesis information, including the Internet, it takes long time to search and is difficult to choose the right path because the substances used in each synthesis method are different. In order to solve these problems, we propose an intelligent synthetic path search system to help researchers shorten the search time for synthetic paths and identify hazardous intermediates that may exist on paths. The system proposed in this study automatically updates the database by collecting information existing on the Internet through Web scraping and crawling using Selenium, a Python package. Based on the depth-first search, the path search performs searches based on the target substance, distinguishes hazardous chemical grades and yields, etc., and suggests all synthetic paths within a defined limit of path steps. For the benefit of each research institution, researchers can register their private data and expand the database according to the format type. The system is being released as open source for free use. The system is expected to find a safer way and help prevent accidents by supporting researchers referring to the suggested paths.

Improvement of Minimum MSE Performance in LMS-type Adaptive Equalizers Combined with Genetic Algorithm

  • Kim, Nam-Yong
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • In this paper the Individual tap - Least Mean Square(IT-LMS) algorithm is applied to the adaptive multipath channel equalization using hybrid-type Genetic Algorithm(GA) for achieving lower minimum Mean Squared Error(MSE). Owing to the global search performance of GA, LMS-type equalizers combined with it have shown preferable performance in both global and local search but those still have unsatisfying minimum MSE performance. In order to lower the minimum MSE we investigated excess MSE of IT-LMS algorithm and applied it to the hybrid GA equalizer. The high convergence rate and lower minimum MSE of the proposed system give us reason to expect that it will perform well in practical multi-path channel equalization systems.

On Finding a Convenient Path in the Hierarchical Road Network

  • Sung, Ki-Seok;Park, Chan-Kyoo;Lee, Sang-Wook;Doh, Seung-Yong;Park, Soon-Dal
    • Management Science and Financial Engineering
    • /
    • v.12 no.2
    • /
    • pp.87-110
    • /
    • 2006
  • In a hierarchical road network, all roads can be classified according to their attributes such as speed limit, number of lanes, etc. By splitting the whole road network into the subnetworks of the highlevel and low-level roads, we can reduce the size of the network to be calculated at once, and find a path in the way that drivers usually adopt when searching out a travel route. To exploit the hierarchical property of road networks, we define a convenient path and propose an algorithm for finding convenient paths. We introduce a parameter indicating the driver's tolerance to the difference between the length of a convenient path and that of a shortest convenient path. From this parameter, we can determine how far we have to search for the entering and exiting gateway. We also propose some techniques for reducing the number of pairs of entries and exits to be searched in a road network. A result of the computational experiment on a real road network is given to show the efficiency of the proposed algorithm.

Path Metric Comparison-based Adaptive QRD-M Algorithm for MUHO Systems (Path Metric 비교 기반 적응형 QRD-M MIMO 검출 기법)

  • Kim, Bong-Seok;Kim, Han-Nah;Choi, Kwon-Hue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.6C
    • /
    • pp.487-497
    • /
    • 2008
  • This paper proposes a new adaptive QRD-M algorithm for MIMO systems. The proposed scheme controls the number of survivor paths,0 based on the channel condition at each layer. The original QRD-M algorithm used fixed M at each layer and it needs large M to achieve near-MLD (maximum-likelihood detection) performance. However, using the large M increases the computation complexity. In this paper, we further effectively control M by employing the channel indicator which includes not only the channel gain, but also instantaneous noise information without necessity of SNR measurement. We found that the ratio of the minimum path metric to the second minimum is good reliability indicator for the channel condition. By adaptively changing M based on this ratio, the proposed scheme effectively achieves near MLD performance and computation complexity of the proposed scheme is significantly smaller than the conventional QRD-M algorithms.

Adaptive K-best Sphere Decoding Algorithm Using the Characteristics of Path Metric (Path Metric의 특성을 이용한 적응형 K-best Sphere Decoding 기법)

  • Kim, Bong-Seok;Choi, Kwon-Hue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11A
    • /
    • pp.862-869
    • /
    • 2009
  • We propose a new adaptive K-best Sphere Decoding (SD) algorithm for Multiple Input Multiple Output (MIMO) systems where the number of survivor paths, K is changed based on the characteristics of path metrics which contain the instantaneous channel condition. In order to overcome a major drawback of Maximum Likelihood Detection (MLD) which exponentially increases the computational complexity with the number of transmit antennas, the conventional adaptive K-best SD algorithms which achieve near to MLD performance have been proposed. However, they still have redundant computation complexity since they only employ the channel fading gain as a channel condition indicator without instantaneous Signal to Noise Ratio (SNR) information. hi order to complement this drawback, the proposed algorithm use the characteristics of path metrics as a simple channel indicator. It is found that the ratio of the minimum path metric to the other path metrics reflects SNR information as well as channel fading gain. By adaptively changing K based on this ratio, the proposed algorithm more effectively reduce the computation complexity compared to the conventional K-best algorithms which achieve same performance.

Efficient Path Finding Based on the $A^*$ algorithm for Processing k-Nearest Neighbor Queries in Road Network Databases (도로 네트워크에서 $A^*$ 알고리즘을 이용한 k-최근접 이웃 객체에 대한 효과적인 경로 탐색 방법)

  • Shin, Sung-Hyun;Lee, Sang-Chul;Kim, Sang-Wook;Lee, Jung-Hoon;Im, Eul-Kyu
    • Journal of KIISE:Databases
    • /
    • v.36 no.5
    • /
    • pp.405-410
    • /
    • 2009
  • This paper proposes an efficient path finding scheme capable of searching the paths to k static objects from a given query point, aiming at both improving the legacy k-nearest neighbor search and making it easily applicable to the road network environment. To the end of improving the speed of finding one-to-many paths, the modified A* obviates the duplicated part of node scans involved in the multiple executions of a one-to-one path finding algorithm. Additionally, the cost to the each object found in this step makes it possible to finalize the k objects according to the network distance from the candidate set as well as to order them by the path cost. Experiment results show that the proposed scheme has the accuracy of around 100% and improves the search speed by $1.3{\sim}3.0$ times of k-nearest neighbor searches, compared with INE, post-Dijkstra, and $na{\ddot{i}}ve$ method.