• Title/Summary/Keyword: Path navigation

Search Result 686, Processing Time 0.179 seconds

Moving Path following and High Speed Precision Control of Autonomous Mobile Robot Using Fuzzy (퍼지를 이용한 자율 이동 로봇의 이동 경로 추종 및 고속 정밀 제어)

  • Lee, Won-Ho;Lee, Hyung-Woo;Kim, Sang-Heon;Jung, Jae-Young;Roh, Tae-Jung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.7
    • /
    • pp.907-913
    • /
    • 2004
  • The major interest of general mobile robot is making a route and following a maked route. But, In the case of robot that is in need of movement of partial high speed, the condition of dynamic limitation is exist, and in these conditions, it demands controlling against movements we want. In this paper, in respect of the following a route at the situation that don't have the environmental map, that is, unknown environments, to prevent the slide of moving robot or the overturn that can happen for it moves fast, we organize the dynamic condition of limitation using the fuzzy logic, and we obtain more safe and fast route tracing ability by changing the standard velocity. Especially, by modeling the line tracing mobile robot, we design the tracing controller against a realtime changing target, and using the fuzzy optimized velocity limitation controller, we confirm that our robot shows its stable tracing ability by limiting its velocity intelligently against the continuously changing line.

Development of Low Altitude Terrain Following System based on TERain PROfile Matching (TERPROM 기반의 저고도 지형추적시스템 개발)

  • Kim, Chong-sup;Cho, In-je;Lee, Dong-Kyu;Kang, Im-Ju
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.9
    • /
    • pp.888-897
    • /
    • 2015
  • A flight capability to take a terrain following flight near the ground is required to reduce the probability that a fighter aircraft can be detected by foe's radar fence in the battlefield. The success rate for mission flight has increased by adopting TFS (Terrain Following System) to enable the modern advanced fighter to fly safely near the ground at the low altitude. This system has applied to the state-of-the-art fighter and bomber, such as B-1, F-111, F-16 E/F and F-15, since the research begins from 1960's. In this paper, the terrain following system and GCAS (Ground Collision Avoidance System) was developed, based on a digital database with UTAS's TERPRROM (TERrain PROfile Matching) equipment. This system calculates the relative location of the aircraft in the terrain database by using the aircraft status information provided by the radar altimeter and the INS (Inertial Navigation System), based on the digital terrain database loaded previously in the DTC (Data Transfer Cartridge), and figures out terrain features around. And, the system is a manual terrain following system which makes a steering command cue refer to flight path marker, on the HUD (Head Up Display), for vertical acceleration essential for terrain following flight and enables a pilot to follow it. The cue is based on the recognized terrain features and TCH (Target Clearance Height) set by a pilot in advance. The developed terrain following system was verified in the real-time pilot evaluation in FA-50 HQS (Handling Quality Simulator) environment.

Localization of Unmanned Ground Vehicle using 3D Registration of DSM and Multiview Range Images: Application in Virtual Environment (DSM과 다시점 거리영상의 3차원 등록을 이용한 무인이동차량의 위치 추정: 가상환경에서의 적용)

  • Park, Soon-Yong;Choi, Sung-In;Jang, Jae-Seok;Jung, Soon-Ki;Kim, Jun;Chae, Jeong-Sook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.7
    • /
    • pp.700-710
    • /
    • 2009
  • A computer vision technique of estimating the location of an unmanned ground vehicle is proposed. Identifying the location of the unmaned vehicle is very important task for automatic navigation of the vehicle. Conventional positioning sensors may fail to work properly in some real situations due to internal and external interferences. Given a DSM(Digital Surface Map), location of the vehicle can be estimated by the registration of the DSM and multiview range images obtained at the vehicle. Registration of the DSM and range images yields the 3D transformation from the coordinates of the range sensor to the reference coordinates of the DSM. To estimate the vehicle position, we first register a range image to the DSM coarsely and then refine the result. For coarse registration, we employ a fast random sample matching method. After the initial position is estimated and refined, all subsequent range images are registered by applying a pair-wise registration technique between range images. To reduce the accumulation error of pair-wise registration, we periodically refine the registration between range images and the DSM. Virtual environment is established to perform several experiments using a virtual vehicle. Range images are created based on the DSM by modeling a real 3D sensor. The vehicle moves along three different path while acquiring range images. Experimental results show that registration error is about under 1.3m in average.

Development of Usability Evaluation Criteria for Senior-Friendly Autonomous Transportation Robot

  • Kim, Seon Chil;Kim, Sun Jung;Choi, Kyongon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.33 no.5
    • /
    • pp.407-422
    • /
    • 2014
  • Objective: The purpose of the study is to develop quantitative usability evaluation criteria for senior-friendly autonomous transportation robot. Background: The Republic of Korea has become the most rapidly aging society, and is anticipated to enter the post-aged society in 2026. To raise the quality of life of a senior with limited mobility and to reduce the burden of caregivers, many high-tech assistive products with information technologies are developed nowadays. The senior-friendly autonomous transportation robot is one person robot vehicle to move a senior to the destination for hospitals, nursing homes or silver town complex. With built-in navigation system and environmental monitoring censors, it automatically seeks the path to the destination and avoids collision to obstacles and pedestrians on the way. Due to the early stage of the product, few usability studies in this field have been done, mostly on general service robots to assist seniors, power wheelchairs and delivery robots. ISO and KS standards for the service robots are focused on safety. Method: Based on the reference usability index, the early draft of the usability evaluation questionnaires was developed. After small group tests and interviews, the experts modified the initial draft to the Usability Evaluation Criteria for Senior-Friendly Autonomous Transportation Robot (UEC-SFATR). Result: UEC-SFATR consisted of 4 subscales - Safety, Controllability, Efficiency and Satisfaction. All of the 4 subscales of UEC-SFATR were passed the reliability criteria by 4 groups of seniors, divided by gender and familiarity of smart-devices. Conclusion: UEC-SFATR covers wider area of user experiences of the SFATR and is a good measurement tool to help both the users and developers of the robot. Application: This study provides guide to the future product development and product competitiveness evaluation by quantifying user experiences for the SFATR.

Issue-Tree and QFD Analysis of Transportation Safety Policy with Autonomous Vehicle (Issue-Tree기법과 QFD를 이용한 자율주행자동차 교통안전정책과제 분석)

  • Nam, Doohee;Lee, Sangsoo;Kim, Namsun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.4
    • /
    • pp.26-32
    • /
    • 2016
  • An autonomous car(driverless car, self-driving car, robotic car) is a vehicle that is capable of sensing its environment and navigating without human input. Autonomous cars can detect surroundings using a variety of techniques such as radar, lidar, GPS, odometry, and computer vision. Advanced control systems interpret sensory information to identify appropriate navigation paths, as well as obstacles and relevant signage. Autonomous cars have control systems that are capable of analyzing sensory data to distinguish between different cars on the road, which is very useful in planning a path to the desired destination. An issue tree, also called a logic tree, is a graphical breakdown of a question that dissects it into its different components vertically and that progresses into details as it reads to the right.Issue trees are useful in problem solving to identify the root causes of a problem as well as to identify its potential solutions. They also provide a reference point to see how each piece fits into the whole picture of a problem. Using Issue-Tree menthods, transportation safety policies were developed with autonompus vehicle in mind.

The Optimization path searching Method Development for Destination (목적지를 고려한 최적 경로탐색 기법 개발)

  • Ham Young-Kug;Kim Tae-Eun
    • Journal of Digital Contents Society
    • /
    • v.6 no.1
    • /
    • pp.55-62
    • /
    • 2005
  • In this paper, we propose the new technique to compute the optimal route by considering the direction of distribution vehicles and the location for delivery, developing the algorithm of the shortest route to approach the location as applying the gemetic algorithm. This approach makes it possible for us to find the best route even under itineraries which include many destinations. Lively studies are currently in progress on the development of vehicle navigation software, combining PDA GPS, and electronic maps. Many web-sites are providing a varier of services which use electronic maps. Popular among these services is one that computes the optimal route between two positions that a user inputs. This service of computing the optimal route plays an important role in distribution industries such as home-delivery. For the distribution system. the construction of a vehicle regulation system enables us to calculate and manipulate the optimal route for distribution vehicles, to enhance the efficiency in making use of vehicles and labor, and to reduce costs.

  • PDF

Development of an Autonomous Guide Robot for Campus Tour (캠퍼스 자율 안내로봇 개발)

  • Lim, Jong Hwan;Kim, Hee Jung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.6
    • /
    • pp.543-551
    • /
    • 2017
  • A campus guide robot was developed that can autonomously guide people through a university campus. The robot is able to evaluate its location using Differential Global Positioning System (DGPS) and Dead-Reckoning using the encoders mounted on its wheels. The robot can navigate autonomously along a guide route that is set in advance. A new position-based guidance approach was suggested. Unlike the conventional method of setting the guide sequence in advance, the robot acquires guidance by judging whether there is guide information corresponding to its current position. The robot searches guide information from the guide database while it moves along the guide path autonomously. If there is any guide information available around the location of the robot, then it performs guide functions. We also suggested an effective guide scenario that can maximize the interest of people. The performance of the robot was tested through sets of experiments in a true campus environment.

The Study on the Method for Linking Portal Sites and OPAC of University Libraries (검색포털과 대학도서관 소장목록 연계방안에 관한 연구)

  • Cho, Jane;Lee, Ji-Won
    • Journal of Information Management
    • /
    • v.37 no.2
    • /
    • pp.75-92
    • /
    • 2006
  • Information users depend more and more on portal sites for Internet navigation. These circumstances are reflected in academic information market especially. As the path of contacting public knowledge information, many institutions of information creation and services are collaborating with portal sites. At this point in time, it is necessary to consider linking libraries services with portal sites. Especially university libraries which have been recognized as private facilities of each university must to be considered as public facilities of local community. So it is desirable to develop method for linking university library services with portal sites for revitalizing university library services. This paper presents methods linking library OPACs with portal sites, through surveying oversea's cases and situation of domestic portal sites.

Development of Autonomous Combine Using DGPS and Machine Vision (DGPS와 기계시각을 이용한 자율주행 콤바인의 개발)

  • Cho, S. I.;Park, Y. S.;Choi, C. H.;Hwang, H.;Kim, M. L.
    • Journal of Biosystems Engineering
    • /
    • v.26 no.1
    • /
    • pp.29-38
    • /
    • 2001
  • A navigation system was developed for autonomous guidance of a combine. It consisted of a DGPS, a machine vision system, a gyro sensor and an ultrasonic sensor. For an autonomous operation of the combine, target points were determined at first. Secondly, heading angle and offset were calculated by comparing current positions obtained from the DGPS with the target points. Thirdly, the fuzzy controller decided steering angle by the fuzzy inference that took 3 inputs of heading angle, offset and distance to the bank around the rice field. Finally, the hydraulic system was actuated for the combine steering. In the case of the misbehavior of the DGPS, the machine vision system found the desired travel path. In this way, the combine traveled straight paths to the traget point and then turned to the next target point. The gyro sensor was used to check the turning angle. The autonomous combine traveled within 31.11cm deviation(RMS) on the straight paths and harvested up to 96% of the whole rice field. The field experiments proved a possibility of autonomous harvesting. Improvement of the DGPS accuracy should be studied further by compensation variations of combines attitude due to unevenness of the rice field.

  • PDF

A Study on the Applications of a Geographic Information Systems To A Transportation Planning Model (교통모형에서의 지리정보시스템 활용방안에 관한 연구)

  • Kim, Dae-Ho;Park, Jin-Woo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.1 no.2 s.2
    • /
    • pp.167-175
    • /
    • 1993
  • This article contains three objectives. First it is to revise unnecessary procedures of a transportation models and transform results of a model into an image. Second objectives is to develop an operational structures which automatically input all data needed from arc-node topology to link-node topology of transportation network. By solving the network discrepancy, time and money for constructing to transportation can be saved. In addition, the rate of errors that my caused during data input process can be reduced. Conclusively, it is found that the integration package may provide user friendliness and reduce the rate of errors. The package can extract informations such as distance between zones and nodes, lane numbers, and hierarchy from arc-node topology for executing SDI. Another advantage of integration is the ability of spatial analysis. The integrated package may provide adequate arrangements of traffic facilities and checking systems of the shortest path. Finally, the database function of GIS package provides various information about study area for transportation analysis.

  • PDF