• Title/Summary/Keyword: Path Selection Algorithm

Search Result 169, Processing Time 0.027 seconds

A Hybrid Model of $A^*$ Search and Genetic Algorithms for ATIS under Multiple Objective Environment (다목적 환경에서의 ATIS 운영을 위한 $A^*$ 탐색 알고리듬과 유전자 알고리듬의 혼합모형)

  • Chang, In-Seong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.26 no.4
    • /
    • pp.421-430
    • /
    • 2000
  • This paper presents a new approach which uses $A^*$ search and genetic algorithms for solving large scale multi-objective shortest path problem. The focus of this paper is motivated by the problem of finding Pareto optimal paths for an advanced traveler information system(ATIS) in the context of intelligent transportation system(ITS) application. The individual description, the decoding rule, the selection strategy and the operations of crossover and mutation are proposed for this problem. The keynote points of the algorithm are how to represent individuals and how to calculate the fitness of each individual. The high performance of the proposed algorithm is demonstrated by computer simulations.

  • PDF

EERA: ENHANCED EFFICIENT ROUTING ALGORITHM FOR MOBILE SENSOR NETWORK

  • Hemalatha, S;Raj, E.George Dharma Prakash
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.389-395
    • /
    • 2022
  • A Mobile Sensor Network is widely used in real time applications. A critical need in Mobile Sensor Network is to achieve energy efficiency during routing as the sensor nodes have scarce energy resource. The nodes' mobility in MWSN poses a challenge to design an energy efficient routing protocol. Clustering helps to achieve energy efficiency by reducing the organization complexity overhead of the network which is proportional to the number of nodes in the network. This paper proposes"EERA: Energy Efficient Routing Algorithm for Mobile Sensor Network" is divided into five phases. 1, Cluster Formation 2.Cluster head and Transmission head selection 3.Path Establishment / Route discovery and 4,Data Transmission. Experimental Analysis has been done and is found that the proposed method performs better than the existing method with respect to four parameters.

Clustering and Routing Algorithm for QoS Guarantee in Wireless Sensor Networks (무선 센서 네트워크에서 QoS 보장을 위한 클러스터링 및 라우팅 알고리즘)

  • Kim, Soo-Bum;Kim, Sung-Chun
    • The KIPS Transactions:PartC
    • /
    • v.17C no.2
    • /
    • pp.189-196
    • /
    • 2010
  • The LEACH does not use flooding method for data transmission and this makes low power consumption. So performance of the WSN is increased. On the other hand, QoS based algorithm which use restricted flooding method in WSN also achieves low power consuming rate by reducing the number of nodes that are participated in routing path selection. But when the data is delivered to the sink node, the LEACH choose a routing path which has a small hop count. And it leads that the performance of the entire network is worse. In the paper we propose a QoS based energy efficient clustering and routing algorithm in WSN. I classify the type of packet with two classes, based on the energy efficiency that is the most important issue in WSN. We provide the differentiated services according to the different type of packet. Simulation results evaluated by the NS-2 show that proposed algorithm extended the network lifetime 2.47 times at average. And each of the case in the class 1 and class 2 data packet, the throughput is improved 312% and 61% each.

Energy Efficient Cluster Head Selection and Routing Algorithm using Hybrid Firefly Glow-Worm Swarm Optimization in WSN

  • Bharathiraja S;Selvamuthukumaran S;Balaji V
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2140-2156
    • /
    • 2023
  • The Wireless Sensor Network (WSN), is constructed out of teeny-tiny sensor nodes that are very low-cost, have a low impact on the environment in terms of the amount of power they consume, and are able to successfully transmit data to the base station. The primary challenges that are presented by WSN are those that are posed by the distance between nodes, the amount of energy that is consumed, and the delay in time. The sensor node's source of power supply is a battery, and this particular battery is not capable of being recharged. In this scenario, the amount of energy that is consumed rises in direct proportion to the distance that separates the nodes. Here, we present a Hybrid Firefly Glow-Worm Swarm Optimization (HF-GSO) guided routing strategy for preserving WSNs' low power footprint. An efficient fitness function based on firefly optimization is used to select the Cluster Head (CH) in this procedure. It aids in minimising power consumption and the occurrence of dead sensor nodes. After a cluster head (CH) has been chosen, the Glow-Worm Swarm Optimization (GSO) algorithm is used to figure out the best path for sending data to the sink node. Power consumption, throughput, packet delivery ratio, and network lifetime are just some of the metrics measured and compared between the proposed method and methods that are conceptually similar to those already in use. Simulation results showed that the proposed method significantly reduced energy consumption compared to the state-of-the-art methods, while simultaneously increasing the number of functioning sensor nodes by 2.4%. Proposed method produces superior outcomes compared to alternative optimization-based methods.

Load Balancing of Unidirectional Dual-link CC-NUMA System Using Dynamic Routing Method (단방향 이중연결 CC-NUMA 시스템의 동적 부하 대응 경로 설정 기법)

  • Suh Hyo-Joon
    • The KIPS Transactions:PartA
    • /
    • v.12A no.6 s.96
    • /
    • pp.557-562
    • /
    • 2005
  • Throughput and latency of interconnection network are important factors of the performance of multiprocessor systems. The dual-link CC-NUMA architecture using point-to-point unidirectional link is one of the popular structures in high-end commercial systems. In terms of optimal path between nodes, several paths exist with the optimal hop count by its native multi-path structure. Furthermore, transaction latency between nodes is affected by congestion of links on the transaction path. Hence the transaction latency may get worse if the transactions make a hot spot on some links. In this paper, I propose a dynamic transaction routing algorithm that maintains the balanced link utilization with the optimal path length, and I compare the performance with the fixed path method on the dual-link CC-NUMA systems. By the proposed method, the link competition is alleviated by the real-time path selection, and consequently, dynamic transaction algorithm shows a better performance. The program-driven simulation results show $1{\~}10\%$ improved fluctuation of link utilization, $1{\~}3\%$ enhanced acquirement of link, and $1{\~}6\%$ improved system performance.

Localized Path Selection Algorithm for Energy Efficiency and Prolonging Lifetime in Ad-Hoc Networks (에드 혹 네트워크에서 에너지 효율성과 네트워크 수명 연장을 위한 지역적 경로 선택 알고리즘)

  • Lee, Ju-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.6
    • /
    • pp.65-72
    • /
    • 2010
  • In ad-hoc network, the technique to efficiently consume the limited amounts of energy is an important issue since the wireless terminal node is operated on batteries as their energy resource. In order to extend the system lifetime, through a balanced energy consumption, we must delay the situation in which a particular terminal node's energy is depleted and results in system disconnection. Also, the link, which has low reliability due to the mobility of the node, should be avoided considering the key element when setting up the route. The proposed CMLR method in this paper enables to increase the efficiency of energy consumption with a new cost function considering the residue energy of node, error rate of link, and transmission energy consumption. This method is extending the network lifetime and increasing the energy efficiency by compromising the value between the minimization of the transmission energy consumption and maximization of the node's lifetime. Through the simulations the proposed CMLR algorithm was verified by showing better performance over the conventional methods in terms of network lifetime and path efficiency.

A Strategy of the Link Saving Routing and Its Characteristics for QoS Aware Energy Saving(QAES) in IP Networks (IP Network에서 QoS Aware Energy Saving(QAES)을 위한 링크 절약 라우팅의 한 방법 및 특성)

  • Han, Chimoon;Kim, Sangchul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.5
    • /
    • pp.76-87
    • /
    • 2014
  • Today the energy consumption of ICT networks is about 10% of the worldwide power consumption and is predicted to increase remarkably in the near future. For this reason, this paper studies energy saving strategies assuring the network-level QoS. In the strategies, the energy consumption of NIC(network interface card) on both endpoint of links decreases by selecting links and making them sleep when the total traffic volume of the IP network is lower than a threshold. In this paper, we propose a heuristic routing algorithm based on so-called delegating/delegated routers, and evaluate its characteristics using computer simulation considering network-level QoS. The selection of sleep links is determined in terms of the number of traffic paths (called min_used path) or the amount of traffics(called min_used traffic) through those kinks. To our experiment, the min_used traffic method shows a little better energy saving but the increased path length compared to the min_used path method. Those two methods have better energy saving characteristics than the random method. This paper confirms that the delegating/delegated router-based routing algorithm results in energy saving effects and sustains network-level QoS in IP networks.

BDLR:A New Routing Algorithm for ISPN (통합 서비스 패킷 망을 위한 BDLR 라우팅 알고리즘)

  • Cha, Mi-Lee;Lee, Gwang-Il;Park, Nam-Hun;Kim, Sang-Ha
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.5
    • /
    • pp.1308-1318
    • /
    • 1997
  • This paper proposes a new touthind algorithm, the Bandwidth-Delay-Loss based Routing(BDLR) algotithm, which supports the selection of an effcienet routing path by cinsidering the characteristics and QoS requirements of intergarted servies over the Untegrated Serives Packet Network(ISPN), and also compareas it with other touting algorithms by simulating their perfomances on the various combinations of the realtime and non-realtime traffic over the ISPN. The simulation shows that the BDLR algorithm takes great advantages on transmisson dealy, the satisfiability of QoS requirements, and the adapation of traffic envirment over the other routing algorithms priposed for ISPN until now.

  • PDF

Using Genetic Algorithms in Wireless Mesh Network Routing Protocol Design (유전 알고리즘을 이용한 무선 메쉬 네트워크에서의 라우팅 프로토콜 설계)

  • Yoon, Chang-Pyo;Ryou, Hwang-Bin
    • The KIPS Transactions:PartC
    • /
    • v.18C no.3
    • /
    • pp.179-186
    • /
    • 2011
  • Wireless Mesh Network technology refers to the technology which establishes wireless network whose transmission speed is similar to that of the wire system, and provides more enhanced flexibility in the building of network, compared to the existing wired network. In addition, it has the feature of less mobility and less restriction from the energy effect. However, there follow many considerations such as system overhead in the case of setting or the selection of multi-path. Accordingly, the focus is on the design and optimization of network which can reflect this network feature and the technology to establish path. This paper suggests the methods on the programming of path in Wireless Mesh Network routing by applying the evaluation value of node service, making use of the loss rate of data, the hop count of bandwidth and link and the traffic status of node, considering the performance of link and load in the fitness evaluation function, in order to respond to the programming of multi-path effectively.

A Fast Route Selection Mechanism Considering Channel Statuses in Wireless Sensor Networks (무선 센서 네트워크에서 채널 상태를 고려하여 빠른 경로를 선택하는 기법)

  • Choi, Jae-Won
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.7
    • /
    • pp.45-51
    • /
    • 2009
  • We have presented a routing mechanism that selects a route by considering channel statuses in order to fast transfer delay-sensitive data in WSNs (Wireless Sensor Networks). The existing methods for real-time data transfer select a path whose latency is the shortest or the number of hops is the smallest. An algorithm to select a real-time transfer path based on link error rates according to the characteristic of wireless medium was also suggested. However, the propagation delay and retransmission timeout affected by link error rates are shorter than channel assessment time and backoff time. Therefore, the mechanism proposed in this paper estimated the time spent in using a clear channel and sending out a packet, which is based on channel backoff rates. A source node comes to select a route with the shortest end-to-end delay as a fast transfer path for real-time traffic, and sends data along the path chosen. We found that this proposed mechanism improves the speed of event-to-sink data transfer by performing experiments under different link error and channel backoff rates.