• 제목/요약/키워드: Path Control

검색결과 2,409건 처리시간 0.026초

자동주차를 위한 차량형 자율주행 로봇에 적합한 경로계획법의 비교분석 (Comparisonal Analysis of Path Planning Methods for Automatic Parking Control of a Car-Like Mobile Robot)

  • 권현기;정우진
    • 제어로봇시스템학회논문지
    • /
    • 제18권3호
    • /
    • pp.267-274
    • /
    • 2012
  • We proposed the KPP (Korea university Path Planner) in our previous works. The KPP is the path planning scheme of a car-like mobile robot in parking environment. The objective of this paper is to investigate the advantage of the KPP through the quantitative and qualitative analysis compared with conventional RRT. For comparison, we proposed travel time for performance index. This paper shows that the KPP shows outstanding performances from the viewpoint of travel time and computational efficiency compared with RRT.

비최소위상 상쇄계를 가진 시스템을 위한 주기소음의 적응 역 궤환 제어 (Adaptive inverse feedback control of periodic noise for systems with nonminimum phase cancellation path)

  • 김선민;박영진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.437-442
    • /
    • 2000
  • An alternative inverse feedback structure for adaptive active control of periodic noise is introduced for systems with nonminimum phase cancellation path. To obtain the inverse model of the nonminimum phase cancellation path, the cancellation path model can be factorized into a minimum phase term and a maximum phase term. The maximum phase term containing unstable zeros makes the inverse model unstable. To avoid the instability, we alter the inverse model of the maximum phase system into an anti-causal FIR one. An LMS predictor estimates the future samples of the noise, which are necessary for causality of both anti-causal FIR approximation for the stable inverse of the maximum phase system and time-delay existing in the cancellation path. The proposed method has a faster convergence behavior and a better transient response than the conventional FX-LMS algorithms with the same internal model control structure since a filtered reference signal is not required. We compare the proposed methods with the conventional methods through simulation studies.

  • PDF

Obstacle-avoidance Algorithm using Reference Joint-Velocity for Redundant Robot Manipulator with Fruit-Harvesting Applications

  • Y.S. Ryuh;Ryu, K.H.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1996년도 International Conference on Agricultural Machinery Engineering Proceedings
    • /
    • pp.638-647
    • /
    • 1996
  • Robot manipulators for harvesting fruits must be controlled to track the desired path of end-effector to avoid obstacles under the consideration of collision free area and safety path. This paper presents a robot path control algorithm to secure a collision free area with the recognition of work environments. The flexible space, which does not damage fruits or branches of tree due to their flexibility and physical properties , extends the workspace. Now the task is to control robot path in the extended workspace with the consideration of collision avoidance and velocity limitation at the time of collision concurrently. The feasibility and effectiveness of the new algorithm for redundant manipulators were tested through simulations of a redundant manipulator for different joint velocities.

  • PDF

Path coordinator by the modified genetic algorithm

  • Chung, C.H.;Lee, K.S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1939-1943
    • /
    • 1991
  • Path planning is an important task for optimal motion of a robot in structured or unstructured environment. The goal of this paper is to plan the shortest collision-free path in 3D, when a robot is navigated to pick up some tools or to repair some parts from various locations. To accomplish the goal of this paper, the Path Coordinator is proposed to have the capabilities of an obstacle avoidance strategy[3] and a traveling salesman problem strategy(TSP)[23]. The obstacle avoidance strategy is to plan the shortest collision-free path between each pair of n locations in 2D or in 3D. The TSP strategy is to compute a minimal system cost of a tour that is defined as a closed path navigating each location exactly once. The TSP strategy can be implemented by the Neural Network. The obstacle avoidance strategy in 2D can be implemented by the VGraph Algorithm. However, the VGraph Algorithm is not useful in 3D, because it can't compute the global optimality in 3D. Thus, the Path Coordinator is proposed to solve this problem, having the capabilities of selecting the optimal edges by the modified Genetic Algorithm[21] and computing the optimal nodes along the optimal edges by the Recursive Compensation Algorithm[5].

  • PDF

차륜형 이동로봇 시스템의 하이브리드 시스템 모델과 제어 (An approach to hybrid system modeling and control for the mobile robot systems)

  • 임진모;임미섭;임준홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.231-236
    • /
    • 1997
  • We propose the hybrid control for the path control of wheeled mobile robot system. To develop the hybrid control of mobile robot, the continuous dynamics of mobile robot are modeled by the switched systems. The abstract model and digital automata for the path control are developed. This hybrid control system has the 3-layered hierachical structure : digital automata as the higher process, mobile robot system as the lower process, and the interface as the interaction process between the continuous dynamics and the discrete dynamics. The control of following the desired-paths with edges are investigated as the applications by the computer simulation.

  • PDF

권상/권하 속도가 큰 경우 크레인의 비선형 무진동 제어 (A Nonlinear Model-Based Anti-Swing Control for Overhead Cranes with High Hoisting Speeds)

  • 이호훈;전종학;최승갑
    • 대한기계학회논문집A
    • /
    • 제25권9호
    • /
    • pp.1461-1467
    • /
    • 2001
  • This paper proposes a new approach for the ant-swing control of overhead cranes. The proposed control consists of a model-based anti-swing control scheme and a practical path planning scheme. The anti-swing control scheme is designed based on the Lyapunov stability theorem; the proposed control does not require the usual constraints of small load mass, small load swing, slow hoisting speed, and small hoisting distance, but guarantees asymptotic stability while keeping all internal signals bounded. The path planning scheme is designed based on the concepts of minimum-time control and anti-swing control; the proposed path planning generates near-minimum-time trajectories independently of hoisting speed and distance. The effectiveness of the proposed control is shown by computer simulation.

RMAC를 적용한 어뢰형 무인잠수정(ISiMi)의 수평면 경로추종 제어 (Path Tracking Control Based on RMAC in Horizontal Plane for a Torpedo-Shape AUV, ISiMi)

  • 김영식;이지홍;김진하;전봉환;이판묵
    • 한국해양공학회지
    • /
    • 제23권6호
    • /
    • pp.146-155
    • /
    • 2009
  • This paper considers the path tracking problem in a horizontal plane for underactuated (or non-holonomic) autonomous underwater vehicles (AUVs). Underwater mapping has been an important mission for AUVs. Recently, underwater docking has also become a main research field of AUVs. These kinds of missions basically require accurate attitude and trajectory control performance. However, the non-holonomic problem should be solved to achieve accurate path tracking for the torpedo-type of AUVs. In this paper, resolved motion and acceleration control (RMAC) is considered as a path tracking controller for an underactuated torpedo-shaped AUV, ISiMi. A set of numerical simulations is carried out to illustrate the effectiveness of the proposed RMAC scheme, and experimental data with ISiMi100 and discussions are presented.

Path following of a surface ship sailing in restricted waters under wind effect using robust H guaranteed cost control

  • Wang, Jian-qin;Zou, Zao-jian;Wang, Tao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.606-623
    • /
    • 2019
  • The path following problem of a ship sailing in restricted waters under wind effect is investigated based on Robust $H_{\infty}$ Guaranteed Cost Control (RHGCC). To design the controller, the ship maneuvering motion is modeled as a linear uncertain system with norm-bounded time-varying parametric uncertainty. To counteract the bank and wind effects, the integral of path error is augmented to the original system. Based on the extended linear uncertain system, sufficient conditions for existence of the RHGCC are given. To obtain an optimal robust $H_{\infty}$ guaranteed cost control law, a convex optimization problem with Linear Matrix Inequality (LMI) constraints is formulated, which minimizes the guaranteed cost of the close-loop system and mitigates the effect of external disturbance on the performance output. Numerical simulations have confirmed the effectiveness and robustness of the proposed control strategy for the path following goal of a ship sailing in restricted waters under wind effect.

가시도 그래프와 유전 알고리즘에 기초한 이동로봇의 경로계획 (Path Planning for Mobile Robots using Visibility Graph and Genetic Algorithms)

  • 정연부;이민중;전향식;최영규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.418-418
    • /
    • 2000
  • This paper proposes a path planning algorithm for mobile robot. To generate an optimal path and minimum time path for a mobile robot, we use the Genetic Algorithm(GA) and Visibility Graph. After finding a minimum-distance between start and goal point, the path is revised to find the minimum time path by path-smoothing algorithm. Simulation results show that the proposed algorithms are more effective.

  • PDF

엄격히 상호 간섭하는 이동 로봇의 협동 제어 (Cooperative control of tightly-coupled multiple mobile robots)

  • 이승환;이연정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.556-559
    • /
    • 1997
  • In this paper, we propose a cooperative multi-robot control algorithm. Specifically, the cooperative task is that two mobile robots should transfer a long rigid object along a predefined path. To resolve the problem, we introduce the master-slave concept for two mobile robots, which have the same structure. According to the velocity of the master robot and the positions of two robots on the path, the velocity of the slave robot is determined. In case that the robots can't move further, the role of the robot is interchanged. The effectiveness of this decentralized algorithm is proved by computer simulations.

  • PDF