• Title/Summary/Keyword: Patch antennas

Search Result 273, Processing Time 0.024 seconds

Fabrication and Frequency Agile of Microstrip Antennas Using Y-cut $LiNbo_3$, Quartz and FR-4 Substrates. (Y-cut $LiNbo_3$, Quartz, FR-4 기판을 이용한 마이크로스트립 안테나의 제작과 공진주파수 이동에 관한 연구.)

  • Lee, Ki-Se;Lee, Kyu-Il;Kang, Hyun-Il;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.116-120
    • /
    • 2004
  • In this paper, we proposed a method to shift the resonant frequency by applying the electric field to microstrip patch antenna using piezoelectric substrates. We fabricated microstrip patch antenna using Y-cut LiNbO3, Quartz and FR-4 substrates. We designed and simulated the microstrip antennas by Ensemble V 7.0 of the simulation too1. We observed the resonant frequency by DC applied electric field in a microstrip patch antenna. When the electric field was 300 V/mm, the resonant frequency agile of Y-cut LiNbO3 microstrip patch antennas were 29 MHz. When the electric field was 400 V/mm, the frequency agile of X-cut, Y-cut and Z-cut quartz microstrip patch antennas were 55.2 MHz, 34.2 MHz and 28.0 MHz, respectively. However, when the electric field was 400 V/mm, the resonant frequency of FR-4 microstrip patch antenna does not changed. It was shown that the resonant frequency agile of Y-cut and Z-cut quartz microstrip patch antennas are due to piezoelectric phenomenon not to be permittivity.

  • PDF

Effect of the Pin Radius on the Radiation Characteristics of a Patch Antenna with an Array of Pins Interconnecting the Patch and the Ground (패치와 접지면 사이에 삽입된 핀 배열을 가지는 안테나의 방사특성에 핀 반경이 미치는 효과)

  • Lee, Woo-Ram;Kim, Tae-Young;Kim, Boo-Gyoun;Shin, Jong-Dug
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.10
    • /
    • pp.80-89
    • /
    • 2008
  • Patch antennas with an array of pins interconnecting the patch and the ground (Pin array patch antennas) are fabricated and their characteristics are measured. The radiation characteristics of pin array patch antennas are compared to those of conventional patch antennas. The suppressions of the radiation in horizontal directions in E-plane and H-plane are more than 10 dB and 4 dB, respectively. The forward radiation is increased, while the backward radiation is decreased. The directivity is improved because the half-power beamwidth of radiation patterns in both E-plane and H-plane is reduced. The resonance frequency of a pin array patch antenna increases as the pin radius of a pin amy patch antenna increases. An optimum pin radius of a pin array patch antenna exists for the maximum suppression of the radiation in horizontal directions.

Size reduction of patch antennas using shorting post and spiral shape (Shorting Post와 Spiral 모양을 이용한 소형 패치 안테나 설계)

  • Cho, Young-Sang;Sung, Young-Je;Kim, Young-Sik
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.492-495
    • /
    • 2003
  • This paper presents a novel method to reduce the size of microstrip patch antennas using shorting post and spiral shape. The spiral conductor shape of the proposed shorted patch antennas increases the length of the current patch for a given area. Two spiral shaped patch antennas with shorting post operating at 700 MHz bands are investigated experimentally.

  • PDF

Radiation Characteristics of Patch Antennas with an Array of Pins for Various Substrate Thicknesses (기판 두께에 따른 핀 배열을 가지는 패치 안테나의 방사 특성)

  • Cho, Myung-Ki;Kim, Tae-Young;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.10
    • /
    • pp.63-71
    • /
    • 2009
  • The patch antennas with an array of pins with excellent radiation characteristics are investigated for several substrate thicknesses. The patch length of a pin array patch antenna for the maximum suppression of radiation in the horizontal plane decreases as the substrate thickness increases. The radiation in the horizontal plane of a pin array patch antenna is very small compared to that of a conventional patch antenna. The increase of forward radiation and the decrease of backward radiation of a pin array patch are obtained compared to those of a conventional patch antenna. The half-power beamwidth of E-plane radiation pattern of a pin array patch antenna is narrow compared to that of a conventional patch antenna so that the directivity is improved.

The Design of a K-Band 4$\times$4 Microstrip Patch Array Antennas with High Directitvity (고지향성 구현을 갖는 K-밴드 4$\times$4 마이크로스트립 패치 어레이 안테나의 설계)

  • Lee, Ha-Young;Kim, Hyeong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.161-166
    • /
    • 2007
  • In this paper, two 4$\times$4 rectangular patch array antennas operating at 20 GHz are implemented for the satellite communication. The sixteen patch antennas and microstrip feeding line are printed on a single-layered substrate. The design goal is to achieve high directivity and gain by optimizing design parameters through permutations in element spacing. The spacing between the array elements is chosen to be 0.736$\lambda$. Numerical simulation results indicate that the HPBW(Half-Power Beam Width) of the 4$\times$4 patch array antenna is 18.78 degrees in the E-plane and 18.48 degrees in the H-plane with a gain of 17.18 dBi. Numerical simulations of a 4$\times$4 recessed patch array antenna yield a HPBW of 18.71 degrees in the E-plane and 17.82 degrees in the H-plane with a gain of 19.43 dBi.

Mutual Coupling Characteristics of a 2-element Array Antenna using Inductor Loaded Patch Antennas (Inductor Loaded 패치안테나를 이용한 2 소자 배열 안테나의 상호결합 특성)

  • Kim, Gun-Su;Kim, Tae-Young;Yoon, Young-Min;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.4
    • /
    • pp.92-99
    • /
    • 2011
  • Effect of a finite grounded substrate on mutual coupling characteristics of a 2-element array antenna using inductor loaded patch antennas is investigated. The mutual coupling characteristics of a 2-element array antenna using inductor loaded patch antennas positioned along the E-plane are compared with those positioned along the H-plane. The magnitude of mutual coupling is very small and the distance between the center of element and the substrate edge on the E-plane for the minimum mutual coupling is similar regardless of the direction at which antenna elements are positioned in the case of a 2-element array antenna using inductor loaded patch antennas.

Adaptive Adjustment of Radiation Properties for Entire Range of Axial Ratio using a Parasitic Microstrip Polarizer

  • Yoo, Sungjun;Lee, Dongeun;Byun, Gangil;Choo, Hosung
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1250-1256
    • /
    • 2017
  • This paper proposes the design of microstrip patch antennas for dual-band polarization adjustment. The antenna has a multi-layer structure for dual-band operation, and each layer contains a resonating patch with surrounding strips separated into two parts. The antenna polarization is adjusted by varying the separated positions of the strips, while fixing other design parameters. To demonstrate the feasibility, an antenna sample with right-hand circular polarization is fabricated, and its antenna characteristics are measured in a full anechoic chamber. The operating principle of polarization adjustment in the dual frequency bands is also verified by observing near electromagnetic fields and the magnetic surface current density around the antenna.

Effect of the Patch Length and Via Radius on the Radiation Characteristics of an Inductive Loaded Patch Antenna (패치의 길이와 비아의 반경이 Inductive Loaded Patch Antenna의 방사 특성에 미치는 영향)

  • Kwak, Eun-Hyuk;Yoon, Young-Min;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.6
    • /
    • pp.48-56
    • /
    • 2012
  • Radiation characteristics of inductive loaded patch antennas (ILPAs) and conventional patch antennas using a half wavelength resonance mode for substrates with various dielectric constants are investigated. ILPAs have the good radiation characteristics such as high broadside gain and suppressed radiation along the horizontal plane compared to those of conventional patch antennas. We show that ILPAs with the appropriate patch length and via radius have the optimum radiation characteristics such as the highest broadside gain and the most suppressed horizontal radiation.

The Radiation Characteristics of a Linear Phased Array Antenna using a Pin Array Patch Antenna as an Element (핀 배열 안테나를 단위 안테나로 사용한 선형 위상 배열 안테나의 방사 특성)

  • Kim, Tae-Young;Kim, Gun-Su;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.12
    • /
    • pp.44-51
    • /
    • 2009
  • The radiation characteristics of a pin array patch antenna phased array are compared to those of a conventional patch antenna phased array. The performance of a pin array patch antenna phased array is much improved than that of a conventional patch antenna phased array because the mutual coupling between the adjacent pin array patch antennas is very small compared to that between the adjacent conventional patch antennas. The radiation characteristics of a pin array patch antenna phased array show the superior performance such as low variation of the gain of the main beam and the side lobe level for the variation of the direction of the main beam.

Effect of the Patch Width on the Radiation Characteristics of a Pin Array Patch Antenna (패치의 폭이 핀 배열 패치 안테나의 방사 특성에 미치는 효과)

  • Yoon, Young-Min;Kim, Tae-Young;Cho, Myung-Ki;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.1
    • /
    • pp.77-83
    • /
    • 2010
  • Radiation characteristics of $5{\times}4$ pin array patch antennas are compared to those of $5{\times}2$ pin array patch antennas for several substrate thicknesses using the computer simulation. Since the number of unit cells of a $5{\times}2$ pin array patch antenna is half of that of a $5{\times}4$ pin array patch antenna, the number of pins used in a $5{\times}2$ pin array patch antenna is half of that in a $5{\times}4$ pin array patch antenna and the patch width of a $5{\times}2$ pin array patch antenna is very small compared to that of a $5{\times}4$ pin array patch antenna. However, the radiation characteristics of a $5{\times}2$ pin array patch antenna are almost similar to those of a $5{\times}4$ pin array patch antenna.