• Title/Summary/Keyword: Patch Deployment

Search Result 5, Processing Time 0.018 seconds

A Design for a Hyperledger Fabric Blockchain-Based Patch-Management System

  • Song, Kyoung-Tack;Kim, Shee-Ihn;Kim, Seung-Hee
    • Journal of Information Processing Systems
    • /
    • v.16 no.2
    • /
    • pp.301-317
    • /
    • 2020
  • An enterprise patch-management system (PMS) typically supplies a single point of failure (SPOF) of centralization structure. However, a Blockchain system offers features of decentralization, transaction integrity, user certification, and a smart chaincode. This study proposes a Hyperledger Fabric Blockchain-based distributed patch-management system and verifies its technological feasibility through prototyping, so that all participating users can be protected from various threats. In particular, by adopting a private chain for patch file set management, it is designed as a Blockchain system that can enhance security, log management, latest status supervision and monitoring functions. In addition, it uses a Hyperledger Fabric that owns a practical Byzantine fault tolerant consensus algorithm, and implements the functions of upload patch file set, download patch file set, and audit patch file history, which are major features of PMS, as a smart contract (chaincode), and verified this operation. The distributed ledger structure of Blockchain-based PMS can be a solution for distributor and client authentication and forgery problems, SPOF problem, and distribution record reliability problem. It not only presents an alternative to dealing with central management server loads and failures, but it also provides a higher level of security and availability.

A Empirical Study on the Patch Impact Assessment Method for Industrial Control Network Security Compliance (산업제어망 보안 컴플라이언스를 위한 패치 영향성 평가 방안에 관한 실증 연구)

  • Choi, Inji
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.6
    • /
    • pp.1141-1149
    • /
    • 2020
  • Most of the industrial control network is an independent closed network, which is operated for a long time after installation, and thus the OS is not updated, so security threats increase and security vulnerabilities exist. The zero-day attack defense must be applied with the latest patch, but in a large-scale industrial network, it requires a higher level of real-time and non-disruptive operation due to the direct handling of physical devices, so a step-by-step approach is required to apply it to a live system. In order to solve this problem, utility-specific patch impact assessment is required for reliable patch application. In this paper, we propose a method to test and safely install the patch using the regression analysis technique and show the proven results. As a patch impact evaluation methodology, the maximum allowance for determining the safety of a patch was derived by classifying test types based on system-specific functions, performance, and behavior before and after applying the patch. Finally, we report the results of case studies applied directly to industrial control networks, the OS patch has been updated while ensuring 99.99% availability.

Mobile Sensor Relocation to Prolong the Lifetime of Wireless Sensor Networks (무선 센서망의 수명 연장을 위한 센서 재배치)

  • Yoo, Young-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4B
    • /
    • pp.338-348
    • /
    • 2009
  • The Wireless Sensor Network (WSN) has recently attracted considerable attention due to the low price and ease to deploy it. In particular, in a hostile or harsh regions where sensors cannot be deployed manually, WSNs can be established just by dropping sensors from the air. In this case, however, most likely sensors are not placed at optimal positions, although the location of sensors does have a drastic impact on the WSN performance. Moreover, randomized deployment algorithm can leave holes in terms of coverage in the sensing area. This paper proposes a sensor relocation scheme where mobile sensors move to patch up the holes by appropriate coverage. Simulation results show that the proposed algorithm outperforms prior existing schemes in terms of coverage and lifespan of WSNs.

Non-cooperative interference radio localization with binary proximity sensors

  • Wu, Qihui;Yue, Liang;Wang, Long;Ding, Guoru
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3432-3448
    • /
    • 2015
  • Interference can cause serious problems in our daily life. Traditional ways in localizing a target can't work well when it comes to the source of interference for it may take an uncooperative or even resistant attitude towards localization. To tackle this issue, we take the BPSN (Binary Proximity Sensor Networks) and consider a passive way in this paper. No cooperation is needed and it is based on simple sensor node suitable for large-scale deployment. By dividing the sensing field into different patches, when enough patches are formed, good localization accuracy can be achieved with high resolution. Then we analyze the relationship between sensing radius and localization error, we find that in a finite region where edge effect can't be ignored, the trend between sensing radius and localization error is not always consistent. Through theoretical analysis and simulation, we explore to determine the best sensing radius to achieve high localization accuracy.

A Bloom Filter Application of Network Processor for High-Speed Filtering Buffer-Overflow Worm (버퍼 오버플로우 웜 고속 필터링을 위한 네트워크 프로세서의 Bloom Filter 활용)

  • Kim Ik-Kyun;Oh Jin-Tae;Jang Jong-Soo;Sohn Sung-Won;Han Ki-Jun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.7 s.349
    • /
    • pp.93-103
    • /
    • 2006
  • Network solutions for protecting against worm attacks that complement partial end system patch deployment is a pressing problem. In the content-based worm filtering, the challenges focus on the detection accuracy and its performance enhancement problem. We present a worm filter architecture using the bloom filter for deployment at high-speed transit points on the Internet, including firewalls and gateways. Content-based packet filtering at multi-gigabit line rates, in general, is a challenging problem due to the signature explosion problem that curtails performance. We show that for worm malware, in particular, buffer overflow worms which comprise a large segment of recent outbreaks, scalable -- accurate, cut-through, and extensible -- filtering performance is feasible. We demonstrate the efficacy of the design by implementing it on an Intel IXP network processor platform with gigabit interfaces. We benchmark the worm filter network appliance on a suite of current/past worms, showing multi-gigabit line speed filtering prowess with minimal footprint on end-to-end network performance.