• Title/Summary/Keyword: Pasternak's foundation

Search Result 177, Processing Time 0.025 seconds

Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation

  • Timesli, Abdelaziz
    • Computers and Concrete
    • /
    • v.26 no.1
    • /
    • pp.53-62
    • /
    • 2020
  • Concrete is the most widely used substance in construction industry, so it's been required to improve its quality using new technologies. Nowadays, nanotechnology offers new frontiers for improving construction materials. In this paper, we study the stability analysis of the Single Walled Carbon Nanotubes (SWCNT) reinforced concrete cylindrical shell embedded in elastic foundation using the Donnell cylindrical shell theory. In this regard, we propose a new explicit analytical formula of the critical buckling load which takes into account the distribution of SWCNT reinforcement through the thickness of the concrete shell using the U, X, O and V forms and the elastic foundation using Winkler and Pasternak models. The rule of mixture is used to calculate the effective properties of the reinforced concrete cylindrical shell. The influence of diverse parameters on the stability behavior of the reinforced concrete shell is also discussed.

Static stability analysis of graphene origami-reinforced nanocomposite toroidal shells with various auxetic cores

  • Farzad Ebrahimi;Mohammadhossein Goudarzfallahi;Ali Alinia Ziazi
    • Advances in nano research
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • In this paper, stability analysis of sandwich toroidal shell segments (TSSs) with carbon nanotube (CNT)-reinforced face sheets featuring various types of auxetic cores, surrounded by elastic foundations under radial pressure is presented. Two distinct types of auxetic structures are considered for the core, including re-entrant auxetic structure and graphene origami (GOri)-enabled auxetic structure. The nonlinear stability equilibrium equations of the longitudinally shallow shells are formulated using the von Karman shell theory, in conjunction with Stein and McElman approximation while considering Winkler-Pasternak's elastic foundation to simulate the interaction between the shell and elastic foundation. The Galerkin method is employed to derive the nonlinear stability responses of the shells. The numerical investigations show the influences of various types of auxetic-core layers, CNT-reinforced face sheets, as well as elastic foundation on the stability of sandwich shells.

Free vibration analysis of FG plates resting on the elastic foundation and based on the neutral surface concept using higher order shear deformation theory

  • Benferhat, Rabia;Daouadji, Tahar Hassaine;Mansour, Mohamed Said;Hadji, Lazreg
    • Earthquakes and Structures
    • /
    • v.10 no.5
    • /
    • pp.1033-1048
    • /
    • 2016
  • An analytical solution based on the neutral surface concept is developed to study the free vibration behavior of simply supported functionally graded plate reposed on the elastic foundation by taking into account the effect of transverse shear deformations. No transversal shear correction factors are needed because a correct representation of the transversal shearing strain obtained by using a new refined shear deformation theory. The foundation is described by the Winkler-Pasternak model. The Young's modulus of the plate is assumed to vary continuously through the thickness according to a power law formulation, and the Poisson ratio is held constant. The equation of motion for FG rectangular plates resting on elastic foundation is obtained through Hamilton's principle. Numerical examples are provided to show the effect of foundation stiffness parameters presented for thick to thin plates and for various values of the gradient index, aspect and side to thickness ratio. It was found that the proposed theory predicts the fundamental frequencies very well with the ones available in literature.

Use of finite and infinite elements in static analysis of pavement

  • Patil, V.A.;Sawant, V.A.;Deb, Kousik
    • Interaction and multiscale mechanics
    • /
    • v.3 no.1
    • /
    • pp.95-110
    • /
    • 2010
  • In recent years, study of the static response of pavements to moving vehicle and aircraft loads has received significant attention because of its relevance to the design of pavements and airport runways. The static response of beams resting on an elastic foundation and subjected to moving loads was studied by several researchers in the past. However, most of these studies were limited to steady-state analytical solutions for infinitely long beams resting on Winkler-type elastic foundations. Although the modelling of subgrade as a continuum is more accurate, such an approach can hardly be incorporated in analysis due to its complexity. In contrast, the two-parameter foundation model provides a better way for simulating the underlying soil medium and is conceptually more appealing than the one-parameter (Winkler) foundation model. The finite element method is one of the most suitable mathematical tools for analysing rigid pavements under moving loads. This paper presents an improved solution algorithm based on the finite element method for the static analysis of rigid pavements under moving vehicular or aircraft loads. The concrete pavement is discretized by finite and infinite beam elements, with the latter for modelling the infinity boundary conditions. The underlying soil medium is modelled by the Pasternak model allowing the shear interaction to exist between the spring elements. This can be accomplished by connecting the spring elements to a layer of incompressible vertical elements that can deform in transverse shear only. The deformations and forces maintaining equilibrium in the shear layer are considered by assuming the shear layer to be isotropic. A parametric study is conducted to investigate the effect of the position of moving loads on the response of pavement.

Effects of Pasternak foundation on the bending behavior of FG porous plates in hygrothermal environment

  • Bot, Ikram Kheira;Bousahla, Abdelmoumen Anis;Zemri, Amine;Sekkal, Mohamed;Kaci, Abdelhakim;Bourada, Fouad;Tounsi, Abdelouahed;Ghazwani, M.H.;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.43 no.6
    • /
    • pp.821-837
    • /
    • 2022
  • This research is devoted to study the effects of humidity and temperature on the bending behavior of functionally graded (FG) ceramic-metal porous plates resting on Pasternak elastic foundation using a quasi-3D hyperbolic shear deformation theory developed recently. The present plate theory with only four unknowns, takes into account both transverse shear and normal deformations and satisfies the zero traction boundary conditions on the surfaces of the functionally graded plate without using shear correction factors. Material properties of porous FG plate are defined by rule of the mixture with an additional term of porosity in the through-thickness direction. The governing differential equations are obtained using the "principle of virtual work". Analytically, the Navier method is used to solve the equations that govern a simply supported FG porous plate. The obtained results are checked by comparing the results determined for the perfect and imperfect FG plates with those available in the scientific literature. Effects due to material index, porosity factors, moisture and thermal loads, foundation rigidities, geometric ratios on the FG porous plate are all examined. Finally, this research will help us to design advanced functionally graded materials to ensure better durability and efficiency for hygro-thermal environments.

A new three-dimensional model for free vibration analysis of functionally graded nanoplates resting on an elastic foundation

  • Mahsa Najafi;Isa Ahmadi;Vladimir Sladek
    • Steel and Composite Structures
    • /
    • v.52 no.3
    • /
    • pp.273-291
    • /
    • 2024
  • This paper presents a three-dimensional displacement-based formulation to investigate the free vibration of functionally graded nanoplates resting on a Winkler-Pasternak foundation based on the nonlocal elasticity theory. The material properties of the FG nanoplate are considered to vary continuously through the thickness of the nanoplate according to the power-law distribution model. A general three-dimensional displacement field is considered for the plate, which takes into account the out-of-plane strains of the plate as well as the in-plane strains. Unlike the shear deformation theories, in the present formulation, no predetermined form for the distribution of displacements and transverse strains is considered. The equations of motion for functionally graded nanoplate are derived based on Hamilton's principle. The solution is obtained for simply-supported nanoplate, and the predicted results for natural frequencies are compared with the predictions of shear deformation theories which are available in the literature. The predictions of the present theory are discussed in detail to investigate the effects of power-law index, length-to-thickness ratio, mode numbers and the elastic foundation on the dynamic behavior of the functionally graded nanoplate. The present study presents a three-dimensional solution that is able to determine more accurate results in predicting of the natural frequencies of flexural and thickness modes of nanoplates. The effects of parameters that play a key role in the analysis and mechanical design of functionally graded nanoplates are investigated.

Exact solution for transverse bending analysis of embedded laminated Mindlin plate

  • Heydari, Mohammad Mehdi;Kolahchi, Reza;Heydari, Morteza;Abbasi, Ali
    • Structural Engineering and Mechanics
    • /
    • v.49 no.5
    • /
    • pp.661-672
    • /
    • 2014
  • Laminated Rectangular plates embedded in elastic foundations are used in many mechanical structures. This study presents an analytical approach for transverse bending analysis of an embedded symmetric laminated rectangular plate using Mindlin plate theory. The surrounding elastic medium is simulated using Pasternak foundation. Adopting the Mindlin plate theory, the governing equations are derived based on strain-displacement relation, energy method and Hamilton's principle. The exact analysis is performed for this case when all four ends are simply supported. The effects of the plate length, elastic medium and applied force on the plate transverse bending are shown. Results indicate that the maximum deflection of the laminated plate decreases when considering an elastic medium. In addition, the deflection of the laminated plate increases with increasing the plate width and length.

Vibration analysis of silica nanoparticles-reinforced concrete beams considering agglomeration effects

  • Shokravi, Maryam
    • Computers and Concrete
    • /
    • v.19 no.3
    • /
    • pp.333-338
    • /
    • 2017
  • In this paper, nonlinear vibration of embedded nanocomposite concrete is investigated based on Timoshenko beam model. The beam is reinforced by with agglomerated silicon dioxide (SiO2) nanoparticles. Mori-Tanaka model is used for considering agglomeration effects and calculating the equivalent characteristics of the structure. The surrounding foundation is simulated with Pasternak medium. Energy method and Hamilton's principal are used for deriving the motion equations. Differential quadrature method (DQM) is applied in order to obtain the frequency of structure. The effects of different parameters such as volume percent of SiO2 nanoparticles, nanoparticles agglomeration, elastic medium, boundary conditions and geometrical parameters of beam are shown on the frequency of system. Numerical results indicate that with increasing the SiO2 nanoparticles, the frequency of structure increases. In addition, considering agglomeration effects leads to decrease in frequency of system.

Non-classical plate model for single-layered graphene sheet for axial buckling

  • Safaei, Babak;Khoda, Farzad Hamed;Fattahi, A.M.
    • Advances in nano research
    • /
    • v.7 no.4
    • /
    • pp.265-275
    • /
    • 2019
  • In this work, the effect of size on the axial buckling behavior of single-layered graphene sheets embedded in elastic media is studied. We incorporate Eringen's nonlocal elasticity equations into three plate theories of first order shear deformation theory, higher order shear deformation theory, and classical plate theory. The surrounding elastic media are simulated using Pasternak and Winkler foundation models and their differences are evaluated. The results obtained from different nonlocal plate theories include the values of Winkler and Pasternak modulus parameters, mode numbers, nonlocal parameter, and side lengths of square SLGSs. We show here that axial buckling behavior strongly depends on modulus and nonlocal parameters, which have different values for different mode numbers and side lengths. In addition, we show that in different nonlocal plate theories, nonlocality is more influential in first order shear deformation theory, especially in certain range of nonlocal parameters.

Surface effects on scale-dependent vibration behavior of flexoelectric sandwich nanobeams

  • Ebrahimi, Farzad;Karimiasl, Mahsa;Civalek, Omer;Vinyas, Mahesh
    • Advances in nano research
    • /
    • v.7 no.2
    • /
    • pp.77-88
    • /
    • 2019
  • This paper infer the transient vibration of piezoelectric sandwich nanobeams, In present work, the flexoelectric effect on the mechanical properties of vibration piezoelectric sandwich nanobeam with different boundary conditions is investigated. According to the Nonlocal elasticity theory in nanostructures, the flexoelectricity is believed to be authentic for such size-dependent properties. The governing equations are derived by Hamilton's principle and boundary condition solved by Galerkin-based solution. This research develops a nonlocal flexoelectric sandwich nanobeam supported by Winkler-Pasternak foundation. The results of this work indicate that natural frequencies of a sandwich nanobeam increase by increasing the Winkler and Pasternak elastic constant. Also, increasing the nonlocal parameter at a constant length decreases the natural frequencies. By increasing the length to thickness ratio (L/h) of nanobeam, the nonlocal frequencies reduce.