• 제목/요약/키워드: Passive safety system

검색결과 226건 처리시간 0.024초

Development of a GC-MS Automatic Analysis Program to Provide Information on Exposure to Chemical Substances (화학물질 노출정보 제공을 위한 GC-MS 분석자동화 프로그램 개발)

  • Park, Seung-Hyun;Park, Hae Dong;Jang, Miyeon;Ro, Jiwon;Cho, Hyounmin
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • 제31권1호
    • /
    • pp.1-12
    • /
    • 2021
  • Objective: The purpose of this study was to contribute to the prevention of occupational diseases through the development of an automatic analysis program for evaluating workers' exposure to hazardous chemical substances. Methods: The authors selected chemical substances that caused occupational disease in Korea and chemical substances that are frequently used in industrial sites as target substances for a GC-MS automatic analysis program. The target substances are organic compounds which can be measured by a passive sampler. The automatic analysis program was studied using various raw data obtained from GC-MS analysis for the target substances. Results: A total of 48 organic compounds that can be measured with a passive sampler were selected as target substances for the GC-MS automatic analysis program. The selected compounds included substances that caused occupational disease, substances related to C1 and D1 in special health examinations, and substances for which work environment measurements have been frequently conducted. The GC-MS automatic analysis program was developed by combining information mainly on retention time and mass spectrum. The GC-MS automatic analysis program is designed to analyze unknown samples by comparing the mass spectrum and retention time of the samples to those of reference materials. To evaluate the stability of the program, samples at about the 30-50% level of OELs were prepared and analyzed with the GC-MS automatic analysis program, resulting in stable results for all 48 organic compounds. Conclusion: An automatic analysis program for a total of 48 organic compounds was developed using a GC-MS system that can analyze organic compounds. Unknown samples that contain the 48 organic compounds can be automatically analyzed by the developed program. It is anticipated that it can contribute to the prevention of occupational diseases through an GC-MS automatic analysis program that can quickly provide workers with information on exposure to chemical substances.

Rehabilitation of hospital buildings using passive control systems

  • Syrmakezis, C.A.;Mavrouli, O.A.;Antonopoulos, A.K.
    • Smart Structures and Systems
    • /
    • 제2권4호
    • /
    • pp.305-312
    • /
    • 2006
  • In the case of hospital buildings, where seismic design requirements are very high, existing structuresand especially those attacked by past earthquakes, appear, often, unable to fulfil the necessary safety prerequisites. In this paper, the retrofitting of hospital buildings is investigated, using alternative methods of repair and strengthening. Analysis of an existing hospital building in Patras, Greece, is performed. The load-bearing system is a reinforced concrete system. Two solutions are proposed: strengthening using concrete jackets around column and beam elements and application of viscoelastic dampers for the increase of the stability of the structure. Adequate finite element models are constructed for each case and conclusions are drawn on the efficiency of each rehabilitation method.

EXPERIMENTAL INVESTIGATIONS RELEVANT FOR HYDROGEN AND FISSION PRODUCT ISSUES RAISED BY THE FUKUSHIMA ACCIDENT

  • GUPTA, SANJEEV
    • Nuclear Engineering and Technology
    • /
    • 제47권1호
    • /
    • pp.11-25
    • /
    • 2015
  • The accident at Japan's Fukushima Daiichi nuclear power plant in March 2011, caused by an earthquake and a subsequent tsunami, resulted in a failure of the power systems that are needed to cool the reactors at the plant. The accident progression in the absence of heat removal systems caused Units 1-3 to undergo fuel melting. Containment pressurization and hydrogen explosions ultimately resulted in the escape of radioactivity from reactor containments into the atmosphere and ocean. Problems in containment venting operation, leakage from primary containment boundary to the reactor building, improper functioning of standby gas treatment system (SGTS), unmitigated hydrogen accumulation in the reactor building were identified as some of the reasons those added-up in the severity of the accident. The Fukushima accident not only initiated worldwide demand for installation of adequate control and mitigation measures to minimize the potential source term to the environment but also advocated assessment of the existing mitigation systems performance behavior under a wide range of postulated accident scenarios. The uncertainty in estimating the released fraction of the radionuclides due to the Fukushima accident also underlined the need for comprehensive understanding of fission product behavior as a function of the thermal hydraulic conditions and the type of gaseous, aqueous, and solid materials available for interaction, e.g., gas components, decontamination paint, aerosols, and water pools. In the light of the Fukushima accident, additional experimental needs identified for hydrogen and fission product issues need to be investigated in an integrated and optimized way. Additionally, as more and more passive safety systems, such as passive autocatalytic recombiners and filtered containment venting systems are being retrofitted in current reactors and also planned for future reactors, identified hydrogen and fission product issues will need to be coupled with the operation of passive safety systems in phenomena oriented and coupled effects experiments. In the present paper, potential hydrogen and fission product issues raised by the Fukushima accident are discussed. The discussion focuses on hydrogen and fission product behavior inside nuclear power plant containments under severe accident conditions. The relevant experimental investigations conducted in the technical scale containment THAI (thermal hydraulics, hydrogen, aerosols, and iodine) test facility (9.2 m high, 3.2 m in diameter, and $60m^3$ volume) are discussed in the light of the Fukushima accident.

A new design concept for ocean nuclear power plants using tension leg platform

  • Lee, Chaemin;Kim, Jaemin;Cho, Seongpil
    • Structural Engineering and Mechanics
    • /
    • 제76권3호
    • /
    • pp.367-378
    • /
    • 2020
  • This paper presents a new design concept for ocean nuclear power plants (ONPPs) using a tension leg platform (TLP). The system-integrated modular advanced reactor, which is one of the successful small modular reactors, is mounted for demonstration. The authors define the design requirements and parameters, modularize and rearrange the nuclear and other facilities, and propose a new total general arrangement. The most fundamental level of design results for the platform and tendon system are provided, and the construction procedure and safety features are discussed. The integrated passive safety system developed for the gravity based structure-type ONPP is also available in the TLP-type ONPP with minor modifications. The safety system fully utilizes the benefits of the ocean environment, and enhances the safety features of the proposed concept. For the verification of the design concept, hydrodynamic analyses are performed using the commercial software ANSYS AQWA with the Pierson-Moskowitz and JONSWAP wave spectra that represent various ocean environments and the results are discussed.

Development of stability maps for flashing-induced instability in a passive containment cooling system for iPOWER

  • Lim, Sang Gyu;No, Hee Cheon;Lee, Sang Won;Kim, Han Gon;Cheon, Jong;Lee, Jae Min;Ohk, Seung Min
    • Nuclear Engineering and Technology
    • /
    • 제52권1호
    • /
    • pp.37-50
    • /
    • 2020
  • A passive containment cooling system (PCCS) has been developed as advanced safety feature for innovative power reactor (iPOWER). Passive systems are inherently less stable than active systems and the PCCS encountered the flashing-induced instability previously identified. The objective of this study is to develop stability maps for flashing-induced instability using MARS (Multi-dimensional Analysis of Reactor Safety) code. Firstly, we conducted a series of sensitivity analysis to see the effects of time step size, nodalization, and alternative MARS user options on the onset of flashing-induced instability. The riser nodalization strongly affects the prediction of flashing in a long riser of the PCCS, while time step size and alternative user options do not. Based on the sensitivity analysis, a standard input and an analysis methodology were set up to develop the stability maps of PCCS. We found out that the calculated equilibrium quality at the exit of the riser as a stability boundary above 5 kW/㎡ was approximately 1.2%, which was in good agreement with Furuya's results. However, in case of a very low heat flux condition, the onset of instability occurred at the lower equilibrium quality. In addition, it was confirmed that inlet throttling reduces the unstable region.

Design and Verification of the Hardware Architecture for the Active Seat Belt Control System Compliant to ISO 26262 (ISO 26262에 부합한 능동형 안전벨트 제어 시스템의 하드웨어 아키텍처 설계 및 검증)

  • Lee, Jun Hyok;Koag, Hyun Chul;Lee, Kyung-Jung;Ahn, Hyun-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제65권12호
    • /
    • pp.2030-2036
    • /
    • 2016
  • This paper presents a hardware development procedure of the ASB(Active Seat Belt) control system to comply with ISO 26262. The ASIL(Automotive Safety Integrity Level) of an ASB system is determined through the HARA(Hazard Analysis and Risk Assessment) and the safety mechanism is applied to meet the reqired ASIL. The hardware architecture of the controller consists of a microcontroller, H-bridge circuits, passive components, and current sensors which are used for the input comparison. The required ASIL for the control systems is shown to be satisfied with the safety mechanism by calculation of the SPFM(Single Point Fault Metric) and the LFM(Latent Fault Metric) for the design circuits.

Design Concept of Hybrid SIT (복합안전주입탱크(Hybrid SIT) 설계개념)

  • Kwon, Tae-Soon;Euh, Dong-Jin;Kim, Ki-Hwan
    • The KSFM Journal of Fluid Machinery
    • /
    • 제17권6호
    • /
    • pp.104-108
    • /
    • 2014
  • The recent Fukushima nuclear power plant accidents shows that the core make up at high RCS pressure condition is very important to prevent core melting. The core make up flow at high pressure condition should be driven by gravity force or passive forces because the AC-powered safety features are not available during a Station Black Out (SBO) accident. The reactor Coolant System (RCS) mass inventory is continuously decreased by releasing steam through the pressurizer safety valves after reactor trip during a SBO accident. The core will be melted down within 2~3 hours without core make up action by active or passive mode. In the new design concept of a Hybrid Safety Injection Tank (Hybrid SIT) both for low and high RCS pressure conditions, the low pressure nitrogen gas serves as a charging pressure for a LBLOCA injection mode, while the PZR high pressure steam provides an equalizing pressure for a high pressure injection mode such as a SBO accident. After the pressure equalizing process by battery driven initiation valve at a high pressure SBO condition, the Hybrid SIT injection water will be passively injected into the reactor downcomer by gravity head. The SBO simulation by MARS code show that the core makeup injection flow through the Hybrid SIT continued up to the SIT empty condition, and the core heatup is delayed as much.

RESEARCH EFFORTS FOR THE RESOLUTION OF HYDROGEN RISK

  • HONG, SEONG-WAN;KIM, JONGTAE;KANG, HYUNG-SEOK;NA, YOUNG-SU;SONG, JINHO
    • Nuclear Engineering and Technology
    • /
    • 제47권1호
    • /
    • pp.33-46
    • /
    • 2015
  • During the past 10 years, the Korea Atomic Energy Research Institute (KAERI) has performed a study to control hydrogen gas in the containment of the nuclear power plants. Before the Fukushima accident, analytical activities for gas distribution analysis in experiments and plants were primarily conducted using a multidimensional code: the GASFLOW. After the Fukushima accident, the COM3D code, which can simulate a multidimensional hydrogen explosion, was introduced in 2013 to complete the multidimensional hydrogen analysis system. The code validation efforts of the multidimensional codes of the GASFLOW and the COM3D have continued to increase confidence in the use of codes using several international experimental data. The OpenFOAM has been preliminarily evaluated for APR1400 containment, based on experience from coded validation and the analysis of hydrogen distribution and explosion using the multidimensional codes, the GASFLOW and the COM3D. Hydrogen safety in nuclear power has become a much more important issue after the Fukushima event in which hydrogen explosions occurred. The KAERI is preparing a large-scale test that can be used to validate the performance of domestic passive autocatalytic recombiners (PARs) and can provide data for the validation of the severe accident code being developed in Korea.

Application of Adaptive Control for the U Type TLD (U자형 TLD시스템에 대한 적응제어 적용)

  • Ga, Chun-Sik;Shin, Young-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.518-521
    • /
    • 2005
  • The Structures or buildings nowadays draw more complexity in design due to space limitation and other factor that affect the height and dimensions, that results to instability. So the various methods have been carried out to improve the safety factor from an earthquake or a boom until recently. But, it is very hard to get model precisely because these structures are the non-linear and multi-variable systems. For this reason, we developed the active control system that is applied the adaptive control method on the U type Tuned Liquid Damper(TLD) passive control system. It is proven that the proposed active control strategy of the plate carrying U type TLD system is the more effective control method to suppress the vibration of the structure. The entire hybrid control system is composed of the actuator acted in the opposite direction of the TLD system's motion direction and the active control device with an air pressure adjuster. This paper proposed the adaptive control methods to improve the problem of U type TLD system which is used widely for the passive control of the building. And it is proved by the simulation. In advanced, it is developed the pressure control method that is improved the hybrid controller's performance by using air chamber pressure controller. These methods take the advantage of the decrease of the maximum displacement by using the controller as soon as the impact is loaded. This is a very important element for the safety design and economic design of structures.

  • PDF

System Development for Tracking a UHF Passive RF1D Tag in an Outpatient Clinic (외래병원 환경에서 UHF 수동형 RFID 기술을 활용한 태그 추적 시스템 개발)

  • Min, Dai-Ki
    • The Journal of Society for e-Business Studies
    • /
    • 제16권3호
    • /
    • pp.113-127
    • /
    • 2011
  • An RFID system has been widely applied in many areas over the initial SCM application. In the literature enormous RFID applications in healthcare are documented to improve patient safety, patient/provider logistics, and the efficiency of collecting data. Based on the proposed 4-layered RFID system architecture, we introduce a case that implemented an UHF passive RFID-based tracking system in an outpatient clinic. Particularly, we propose a method to process RFID data that contains noise and missing reads. The proposed method for processing unreliable RFID data is capable to locate the tag accurately and provide additional business information. We finally conclude the paper with identifying obstacles and what is necessary to ensure system reliability.