• 제목/요약/키워드: Passive Cooling Method

검색결과 36건 처리시간 0.038초

제로 에너지 하우스 구축을 통한 설계, 시공, 유지관리 최적 방안에 관한 연구 및 제안 (The Study Of Optimum Method About The Architecture, Construction, And Maintenance Through The Construction Of Zero Energy House)

  • 김선근;권순욱
    • 조명전기설비학회논문지
    • /
    • 제28권11호
    • /
    • pp.42-50
    • /
    • 2014
  • In the thesis, the case of zero energy house construction applied with various Active factors and Passive factors which is the real residence as a standard not a normal experimental residence was evaluated, analyzed, and organized. The thesis can be the base data to construct another similar case of zero energy house.

기축건물의 제로에너지 하우스 하자 사례를 통한 공종별 문제점 및 최적구축 방안에 관한 연구 (The Study on Activity Star Problem and Optimum Construction Method Through the Defect Case of Zero Energy House in the Existing Building)

  • 김선근;권순욱
    • 한국전기전자재료학회논문지
    • /
    • 제28권4호
    • /
    • pp.262-270
    • /
    • 2015
  • In this paper existing buildings, not a new buildings and house for living people not just a displaying and a viewing, created by the imagine effect or virtual simulation was applied various Active and Passive elements. After constructing zero-energy houses, through default case happened during operation period it is described problems and solutions about field part, work classification, installation by Location part, and Installation equipment part. Since then, to take advantage of this thesis, it's the purpose of this paper using as the baseline data for building a zero-energy house in another similar case.

능동열시험법을 이용한 몰드변압기 진단 (Diagnostic of Cast Resin Using Active Infrared Thermal Testing Method)

  • 임용배;정승천
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.1
    • /
    • pp.481-484
    • /
    • 2004
  • A form of measured temperature distribution to estimate condition of a electrical apparatus is a absolute reference for condition of the apparatus, time rate of transition, and difference between reference and currently temperature. Because passive thermography which has not injection of external thermal stimulation shows difference of temperature being on surface of a structure and temperature difference between the structure and back ground, the result could apply only to estimation or monitor for condition of terminal relaxation and overload related with temperature rising. However, a thermal flow in active thermography is differently generated by structure and condition of surface and subsurface. This paper presents the nondestructive testing using the properties and includes the results by heat injection and cooling to the apparatus. The buried discontinuity of subsurface could be detected by these techniques.

  • PDF

시각적 쾌적성을 고려한 차양장치의 조명에너지 성능 분석 방법에 관한 연구 (A Study on the Lighting Energy Performance Analysis of a Shading Device based on Visual Comfort)

  • 오민석;이주윤;김기철
    • 한국태양에너지학회 논문집
    • /
    • 제38권6호
    • /
    • pp.1-14
    • /
    • 2018
  • The shading device on the window of the building can be an passive solution to reduce the cooling load and lighting energy, as well as improving the indoor comfort. It is also an architectural element that must be considered for building energy-efficient buildings such as eco-buildings and zero-energy buildings. However, due to various building environments and various shading devices, the installation of excessive shade may lead to the risk of losing the effectiveness of windows. In this study, we propose a method for optimal automatic control of shading device and evaluate its effectiveness by energy analysis of several shading devices.

GaN HEMT를 적용한 3kW급 계통연계 태양광 인버터의 방열 설계 및 개발 (Development of a 3 kW Grid-tied PV Inverter With GaN HEMT Considering Thermal Considerations)

  • 한석규;노용수;현병조;박준성;주동명
    • 전력전자학회논문지
    • /
    • 제26권5호
    • /
    • pp.325-333
    • /
    • 2021
  • A 3 kW grid-tied PV inverter with Gallium nitride high-electron mobility transistor (GaN HEMT) for domestic commercialization was developed using boost converter and full-bridge inverter with LCL filter topology. Recently, many GaN HEMTs are manufactured as surface mount packages because of their lower parasitic inductance characteristic than standard TO (transistor outline) packages. A surface mount packaged GaN HEMT releases heat through either top or bottom cooling method. IGOT60R070D1 is selected as a key power semiconductor because it has a top cooling method and fairly low thermal resistances from junction to ambient. Its characteristics allow the design of a 3 kW inverter without forced convection, thereby providing great advantages in terms of easy maintenance and high reliability. 1EDF5673K is selected as a gate driver because its driving current and negative voltage output characteristics are highly optimized for IGOT60R070D1. An LCL filter with passive damping resistor is applied to attenuate the switching frequency harmonics to the grid-tied operation. The designed LCL filter parameters are validated with PSIM simulation. A prototype of 3 kW PV inverter with GaN HEMT is constructed to verify the performance of the power conversion system. It achieved high power density of 614 W/L and peak power efficiency of 99% for the boost converter and inverter.

축열과 채광조절을 겸한 자연형 태양열 수벽시스템의 집열방식별 성능실험 (Experiment on measures of heat collection for passive solar water wall systems that provide heat storage and natural lighting control)

  • 오영훈;최지은;이철성;윤종호
    • KIEAE Journal
    • /
    • 제16권4호
    • /
    • pp.63-69
    • /
    • 2016
  • Purpose: This preliminary study investigated a potential of the water wall systems that provide heat storage and natural lighting control simultaneously. Method: In order for transparency of the water wall to be controlled, the study first proposed two measures: to adjust transparency of the water wall; to control transparency of water wall surface. The performance of two measures then was verified and compared by experiments. In addition, a trade-off between heat collect and heat storage resulting from using additive for adjusting transparency was investigated. Result: The experiment showed that the two measures are similar in performance. The investigation of trade-off relation showed the additive should have the same heat storage as the water to prevent decrease in thermal performance of the water wall. As an economical measure to control transparency of the water wall, this study suggested a measure of secondary heat transfer systems using shading device that first absorbs solar radiation and then transfers heat to the water wall. The experiment show that performance of the proposed measure is similar to controlling transparency of water wall surface. In conclusion, it is expected that the performance of the water wall can be economically maximized by using the proposed mean in terms of heating, cooling and lighting energy saving.

제로에너지 주택용 요소기술 조합에 따른 에너지절감에 관한 연구 (Energy Saving by Combination of Element Technologies of Zero-Energy House)

  • 신현철;장건익
    • KIEAE Journal
    • /
    • 제15권4호
    • /
    • pp.77-84
    • /
    • 2015
  • Purpose: In 2008, As the green growth policy was presented, Green Building is made any effort to propagation. In this paper, the respective technologies that are able to considerably reduce the energy demands for heating, cooling, hot-water, lighting and ventilation among the variety of technologies were selected. Method: Design factors such as (1) External insulation, (2) Triple glazing window, (3) LED lighting, (4) External venetian blind, (5) Geothermal and (6) Heat recovery ventilator were derived. In addition, energy saving effects in terms of energy demand, energy consumption and energy cost were investigated using EnergyPlus, building energy analysis tool. Result : The results were as follows. (1) It can be seen that high insulated triple glazing window, heat recovery ventilator and external insulation technology is excellent for energy demand. (2) Unlike energy demand, saving effect of energy consumption and energy cost was shown in order of Geothermal > Triple Window > Heat recovery Ventilation> Insulation> LED Lighting > EVB Blind.

에코센터의 생태건축기술에 관한 연구 - 건축재료와 태양에너지활용시스템을 중심으로 - (A Study on the Eco-Tecnique of EcoCenter - Focused on the Building Material and Solar System -)

  • 최영호;심우갑
    • KIEAE Journal
    • /
    • 제4권2호
    • /
    • pp.65-72
    • /
    • 2004
  • Ecological architecture enables people to recycle and reuse architectural resources within the category of ecosystem and also to minimize the effect on environment in a whole process, including architectural planning, usage and exhaustion to use sustainable energies. Rammed earth wall construction method utilized in EcoCenter located in Crystalwaters ecological village in Austrailia is a good example, which maximizes its advantages and also covers its limits to use soil and wood as structural resources. In a case of wood, they used non-treated timber to minimize environmental load and utilized used materials in openings. In the roofs, aluminum coated steel which is plated with zinc collects rain effectively even though it is not regenerable. Nontoxic finishes and insulation in floor and ceiling with used papers are able to minimize its environmental load. Solar energy system applied in EcoCenter enables them to market extra energy with electricity companies as well as support needs of its own buildings to utilize photovoltaic panel system with PV panels. Passive solar system is planned effectively in heating and cooling to apply regenerative walls in a use of rammed earth wall construction and natural ventilation systems through openings.

Prismatic Solar Hybrid Collector 시스템의 에너지 성능 평가에 관한 연구 (Energy Performance Assessment Study of Prismatic Solar Hybrid Collector System)

  • 박준언;김기세;이의준;정모
    • 한국태양에너지학회 논문집
    • /
    • 제23권2호
    • /
    • pp.51-58
    • /
    • 2003
  • PSHC(Prismatic Solar Hybrid Collector) is a passive solar system composed of prismatic acrly glazing, glazing and ventilating fan. This PSHC system is applied to effectively reduce heating ventilation load as well as lighting load. But so far no method appraising thermal performance of this PSHC system has been developed yet. To assess thermal performance of the PSHC system, a prototype PSHC experimental facility and TRNSYS subroutine type-205 model have been developed in Korea Institute of Energy Research (KIER). The results indicated that l)TRNSYS empirical model of PSHC has been properly modeled with actual performance data, 2)a more reliable source of weather data such as NASA and KIER weather station have been also obtained, and therefore, 3)the annual energy performance of PSHC could be assessed based on this proposed TRNSYS model.

Impact of standard construction specification on thermal comfort in UK dwellings

  • Amoako-Attah, Joseph;B-Jahromi, Ali
    • Advances in environmental research
    • /
    • 제3권3호
    • /
    • pp.253-281
    • /
    • 2014
  • The quest for enhanced thermal comfort for dwellings encompasses the holistic utilization of improved building fabric, impact of weather variation and amongst passive cooling design consideration the provision of appropriate ventilation and shading strategy. Whilst thermal comfort is prime to dwellings considerations, limited research has been done in this area with the attention focused mostly on non-dwellings. This paper examines the current and future thermal comfort implications of four different standard construction specifications which show a progressive increase in thermal mass and airtightness and is underpinned by the newly developed CIBSE adaptive thermal comfort method for assessing the risk of overheating in naturally ventilated dwellings. Interactive investigation on the impact of building fabric variation, natural ventilation scenarios, external shading and varying occupants' characteristics to analyse dwellings thermal comfort based on non-heating season of current and future weather patterns of London and Birmingham is conducted. The overheating analysis focus on the whole building and individual zones. The findings from the thermal analysis simulation are illustrated graphically coupled with statistical analysis of data collected from the simulation. The results indicate that, judicious integrated approach of improved design options could substantially reduce the operating temperatures in dwellings and enhance thermal comfort.