• 제목/요약/키워드: Passive Adsorption

검색결과 14건 처리시간 0.02초

생물학적 막분리 공정에서 수동흡착 상태에서의 유기물 유입 부하에 따른 소수성 막의 오염도 분석 (Analysis of Hydrophobic Membrane Fouling on the COD Loading Rates at the State of Passive Adsorption in Membrane Bioreactor)

  • 박태영;최창규
    • 대한환경공학회지
    • /
    • 제37권3호
    • /
    • pp.152-158
    • /
    • 2015
  • 본 연구는 소수성 막 재질에 대한 막오염도를 평가하고자 수동흡착의 개념을 도입하여 정상운전을 위한 막 모듈 이외에 수동흡착 시험용 막 모듈을 설치하여 유출을 시키지 않은 상태에서 막 표면에 부착되는 미생물에 의한 막오염 정도를 분석함으로써 소수성 막오염 잠재성을 평가하고자 하였으며, 이때 운전조건으로 유기물 유입부하를 변화시켜 평가하였다. 이와 더불어 오염된 멤브레인을 세 가지 세정방법(두가지 물리적 세정과 화학적 세정)을 통해 막 세정 전후의 막오염 회복률을 평가하였다. 막오염 평가인자로는 반응조 내 MLSS 농도와 EPS 농도를 조사하였으며, 여과저항 값을 산정하여 막오염 전과 후, 세정 3단계 전과 후를 비교 평가하였다. 실험 결과로서, COD 농도가 750 mg/L인 가장 높은 부하량 조건에서 반응조 내 EPS 농도와 수동흡착 시험용 멤브레인의 여과저항 값이 가장 높게 나타났다. 또한 여과저항 값이 초기 운전 시작 후 차이를 보였지만 60일 이후의 최종 여과저항은 거의 일정하게 나타났는데, 이는 막 표면에 부착된 미생물량이 임계점에 이르러 수동흡착만으로는 더 이상의 막오염은 진행되지 않은 것으로 판단된다. PAds 상태에서 유기물 유입부하에 따른 오염된 막의 세정 전후의 여과저항 측정 결과에서는 3단계 세정 후 평균 회복률이 각각 Run 1이 78%, Run 2가 72%, Run 2가 69%로 유기물 부하가 높을수록 회복률이 떨어지는 것으로 나타났으며, 반면에 물리적 세정에 의한 복원률이 40일 경부터 Run 2와 Run 3의 물리적 세정에 의한 회복률이 낮아지는 것으로 보아 높은 유기물 부하로 인한 막표면의 케이크 형성으로 막오염이 심화된 것으로 판단된다.

NaCl과 NaBr수용액에서 적층가공으로 제조된 Ti-6Al-4V 합금의 공식 저항성 비교 (Comparing Resistances to Pitting Corrosion of Additive Manufactured Ti-6Al-4V Alloys in NaCl and NaBr Aqueous Solutions)

  • 서동일;이재봉
    • Corrosion Science and Technology
    • /
    • 제18권3호
    • /
    • pp.110-116
    • /
    • 2019
  • Resistances to pitting corrosion of additive manufactured (AM) Ti-6Al-4V alloys in 0.6 M NaBr and 0.6 M NaCl aqueous solutions were compared using micro-droplet cell techniques. With respect to the pitting corrosion resistance, this study focused on two different types of halide anions in aqueous solutions, i.e. $Br^-$ and $Cl^-$. The differences between $Br^-$ and $Cl^-$ halide anions for breakdown on passive films of AM Ti-6Al-4V alloy were explained using Langmuir adsorption model with their equilibrium adsorption coefficients. The results of the analysis showed that the lower resistance to pitting potential of AM Ti-6Al-4V alloy in $Br^-$ aqueous solution was attributed to the higher equilibrium adsorption coefficient of Br-. In addition, micro-electrochemical test results showed that the pitting corrosion resistance of dark grains in additive manufactured Ti-6Al-4V alloy was lower as compared to that of bright grains due to the larger volume of ${\alpha}^{\prime}$ phase that caused the susceptibility to pit initiation.

확산길이에 따른 수동식 유기용제 시료채취기의 시료채취성능에 관한 연구 (Sampling Efficiency of Organic Vapor Passive Samplers by Diffusive Length)

  • 이병규;장재길;정지연
    • 한국환경보건학회지
    • /
    • 제35권6호
    • /
    • pp.500-509
    • /
    • 2009
  • Passive samplers have been used for many years for the sampling of organic vapors in work environment atmospheres. Currently, all passive samplers used in domestic occupational monitoring are foreign products. This study was performed to evaluate variable parameters for the development of passive organic samplers, which include the geometry of the device and diffusive length for the sampler design. Four prototype diffusive lengths; A-1(4.5 mm), A-2(7.0 mm), A-3(9.5 mm), A-4(12.0 mm) were tested for adsorption performances to a chemical mixture (benzene, toluene, trichloroethylene, and n-hexane) according to the US-OSHA's evaluation protocol. A dynamic vapor exposure chamber developed and verified by related research was used for this study. The results of study are as follows. The results in terms of sampling rate and recommended sampling time test indicate that the most suitable model was A-3 (9.5 mm diffusive lengths on both sides) for passive sampler design in time weighted average (TWA) assessment. Sampling rates of this A-3 model were 45.8, 41.5, 41.4, and 40.3 ml/min for benzene, toluene, trichloroethylene, and n-hexane, respectively. The A-3 models were tested on reverse diffusion and conditions of low humidity air (35% RH) and low concentrations (0.2 times of TLV). These conditions had no affect on the diffusion capacity of samplers. In conclusion, the most suitable design parameters of passive sampler are: 1) Geometry and structure - 25 mm diameter and 490 $mm^2$ cross sectional area of diffusion face with cylindrical form of two-sided opposite diffusion direction; 2) Diffusive length - 9.5 mm in both faces; 3) Amount of adsorbent - 300 mg of coconut shell charcoal; 4) Wind screen - using nylon net filters (11 ${\mu}m$ pore size).

Concentration/Purification Technologies: Multi-Functionalities of Nanostructures in Biosensing Fields

  • Son, Sang Jun;Min, Junhong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.87-87
    • /
    • 2013
  • Sample concentration and purification processes are essential in the bio-analytical and pharmaceutical fields because most bio samples or media are extremely sophisticated. To concentrate and purify specific substances, passive membrane type filters have been utilized, which is driven by size or charge differences between target and others. The traditional and representative method to identify nucleic acid sequences in the complex biosample is gel electrophoresis, which has been worked by size and net charge of molecules. The adsorption phenomena have been also utilized to concentrate and purify biomolecules. This adsorption of biomolecule can be controlled under specific salts and surfaces as well as surface area. To utilize the differences of physical properties of molecules or bio-targets such as virus, bacteria, and cells, the nanotechnologies can be introduced in target concentration, purification, and isolation processes. In here, I'd like to briefly survey typical examples of nanobiotechnologies which are introduced in sample treatment. Also I specifically demonstrate two different simple techniques to concentrate and detect bacteria from the samples using multifunctional silica nanotube (SNT).

  • PDF

A Study of HC Reduction with Hydrocarbon Adsorber Systems

  • Son, Geon-Seog;Yun, Seung-Won;Kim, Dae-Jung;Lee, Kwi-Young;Choi, Bung-Chul
    • Journal of Mechanical Science and Technology
    • /
    • 제14권10호
    • /
    • pp.1168-1177
    • /
    • 2000
  • Hydrocarbon adsorber is considered as a promising technology to reduce cold start HCs in automotive exhaust gas. In this study, three in-line adsorber systems were tried to reduce the cold start emission. To check the basic characteristics of adsorber converters, surface areas, TPD and TP A were examined after a hydrothermal aging. Also idle engine bench was used to find the adsorption and desorption capabilities of the adsorber systems at cold start. Finally a practicability of the adsorber systems for the LEV achievement was checked with FTP test on a 2.0 D MIT vehicle. The results of this study indicate that hydrocarbon adsorber system is one of the promising passive technologies to meet the ULEV regulation.

  • PDF

에탄올아민화합물 첨가에 대한 니켈의 전기화학적 특성 (Electrochemistry Characterization of Nickel Using Ethanolamine Compound Additives)

  • 박근호
    • 한국응용과학기술학회지
    • /
    • 제27권4호
    • /
    • pp.531-538
    • /
    • 2010
  • The electrochemistry characterization of metal is important in many industrial applications. In this study, we investigated the C-V diagrams related to the electrochemistry characterization of nickel. We determined electrochemical measurement by using cyclic voltammetry with a three electrode system. A measuring range was reduced from initial potential to -1350mV, continuously oxidized to 1650mV and measured to the initial point. The scan rate were 100, 150, 200 and 200mV/s. As a result, the C-V characterization of nickel using ethanolamine and ethylethanolamine inhibitor appeared irreversible process caused by the oxidation current from the cyclic voltammogram. After adding ethanolamine compound additive, adsorption film constituted, and the passive phenomena happened. According to the results by cyclic voltammetry method, it was revealed that the effect of the electrochemistry characterization of nickel depends on ethanolamine structure interaction to adsorption complex.

CeO2 슬러리에서 Glycine의 흡착이 질화규소 박막의 연마특성에 미치는 영향 (Effect of Glycine Adsorption on Polishing of Silicon Nitride in Chemical Mechanical Planarization Process)

  • 김태은;임건자;이종호;김주선;이해원;임대순
    • 한국세라믹학회지
    • /
    • 제40권1호
    • /
    • pp.77-80
    • /
    • 2003
  • 수용액 내에서 질화물 박막의 산화저항성 흡착 피막의 형성을 확인하기 위하여 Si$_3$N$_4$분말 표면의 glycine 흡착 거동을 조사하였다. 염기성분위기에서 glycine은 Si$_3$N$_4$ 분말 표면에 포화 흡착되었으며 이러한 흡착거동은 Si$_3$N$_4$ 박막의 경우에도 동일하게 일어날 것으로 예상되었다. Glycine을 첨가한 CeO$_2$ 슬러리를 제조하고 PH에 따른 Si$_3$N$_4$와 SiO$_2$ 박막의 연마시험을 수행하여 연마율은 감소하고 선택비는 증가하는 것을 확인하였다. 실험에서 얻은 최대 선택비는 pH=12에서 35 이상이었다. 이는 염기성 분위기에서 glycine이 해리하여 막 표면에 화학흡착하고 산화와 용해를 억제함으로써 연마율을 낮추고 선택비 향상에 기여하였기 때문으로 판단된다. 아미노산 계열의 첨가제를 CeO$_2$계 CMP용 슬러리에 적용하는 경우 산화물/질화물 박막의 선택비를 향상시키는데 효과적임을 확인하였다.

아민기를 가진 유기물을 사용한 금속의 부식억제효과 (A Study on the Inhibition Effect of Metal Corrosion Using Organic Compound Containing an Amine Group)

  • 박근호
    • 한국응용과학기술학회지
    • /
    • 제27권3호
    • /
    • pp.361-369
    • /
    • 2010
  • A study on the corrosion inhibition of metals is important in many industrial applications (carbon steel, copper, aluminum, SUS 304, nickel). In this study, we investigated the C-V diagrams related to the surface corrosion of metals. It was observed through the SEM that the surface corrosion state of the various metals had the corrosion potential by the scan rate and the organic inhibitor containing an amine group. We determined to measure cyclic voltammetry using the three-electrode system. The measurement of oxidation and reduction ranged from -1350mV to 1650mV. The scan rate was 50, 100, 150, and 200mV/s. It turned out that the C-V characterization of SUS 304 was irreversible process caused by the oxidation current from the cyclic voltammogram. After adding organic inhibitors, the adsorption film was constituted, and the passive phenomena happened. As a result, it was revealed that the inhibition effect of metal corrosion depends on the molecular interaction, and the interaction has influence on the adsorption complex.

Corrosion Behavior and Inhibition Studies of AZ31B Magnesium Alloy With and Without Cl- in the Alkaline Electrolytes in Addition with Various Inhibitor Additives

  • Shin, Yoonji;Cho, Kyehyun
    • Corrosion Science and Technology
    • /
    • 제18권6호
    • /
    • pp.243-252
    • /
    • 2019
  • The pitting corrosion and inhibition studies of AZ31B magnesium alloy were investigated in the alkaline solution (pH12) with chloride and inhibitors. The corrosion behavior of passive film with/without Cl- in the alkaline electrolyte were conducted by polarization curve and immersion tests in the presence of various additives (inhibitors) to clarify the inhibition efficiency of pitting corrosion at higher potential region. Critical concentration of pitting corrosion for Mg alloy was evaluated with 0.005 M NaCl in 0.01 M NaOH on the anodic polarization behavior. Critical pitting of AZ31B Mg alloy in 0.01 M NaOH is a function of chlorides; Epit = - 1.36 - 0.2 log [Cl-]. When the Sodium Benzoate (SB) was only used as an inhibitor, a few metastable pits developed on the Mg surface by an immersion test despite no pitting corrosion on the polarization curve meaning that adsorption of SB on the surface is insufficient protection from pitting corrosion in the presence of chloride. The role of SB and Sodium Dodecylbenzenesulfonate (SDBS) inhibitors for the Mg alloy surface in the presence of chloride was suppressed from pitting corrosion to co-adsorb on the Mg alloy surface with strong formation of passive film preventing pitting corrosion.

아미드 작용기를 가진 부식억제제를 사용한 금속의 전기화학적 특성 (Electrochemistry Characterization of Metal Using Corrosion Inhibitors Containing Amide Functional Group)

  • 박근호
    • 한국응용과학기술학회지
    • /
    • 제28권1호
    • /
    • pp.48-56
    • /
    • 2011
  • In this study, we investigated the C-V diagrams and metal surface related to the electrochemistry characterization of metal(nickel, SUS-304). We determined electrochemical measurement by using cyclic voltammetry with a three-electrode system. A measuring range was reduced from initial potential to -1350mV, continuously oxidized to 1650 mV and measured to the initial point. The scan rate were 50, 100, 150, 200 and 250 mV/s. As a result, the C-V characterization of metal using N,N-dimethylacetamide and N,N-dimethylformamide inhibitors appeared irreversible process caused by the oxidation current from the cyclic voltammogram. After adding organic corrosion inhibitors, adsorption film constituted, and the passive phenomena happened. According to the results by cyclic voltammetry method, it was revealed that the addition of inhibitors containing amide functional group enhances the corrosion resistance properties.