• Title/Summary/Keyword: Passive Acoustic Control

Search Result 39, Processing Time 0.02 seconds

Sound Control of Structural-acoustic Coupling System Using Optimum Layout of Absorbing Material and Damping Material (흡음재 및 제진재의 최적배치를 이용한 구조-음향 연성계의 소음제어)

  • Kim, Dong-Young;Hong, Do-Kwan;Ahn, Chan-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.2 s.95
    • /
    • pp.161-168
    • /
    • 2005
  • The absorbing material is mostly used to changing the acoustic energy to the heat energy in the passive control, and that consists of the porous media. That controls an air borne noise while the stiffened plates, damping material and additional mass control a structure borne noise. The additional mass can decrease the sound by mass effect and shift of natural frequency, and damping material can decrease the sound by damping effect. The passive acoustic control using these kinds of control materials has an advantage that is possible to control the acoustic in the wide frequency band and the whole space at a price as compared with the active control using the various electronic circuit and actuator. But the space efficiency decreased and the control ability isn't up to the active control. So it is necessary to maximize the control ability in the specific frequency to raise the capacity of passive control minimizing the diminution of space efficiency such an active control. Therefore, the characteristics of control materials and the optimum layout of control materials that attached to the boundary of structure-acoustic coupled cavity were studied using sequential optimization on this study.

Acoustic Control of Optional Space Using Optimum Location of Absorbing Material (흡음재 최적배치를 이용한 임의 공간의 음향제어에 관한 연구)

  • 김동영;홍도관;안찬우
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.10
    • /
    • pp.1048-1054
    • /
    • 2004
  • The Passive acoustic control is used in various fields, such as structures, automobiles, aircraft and so on. It is used in variety of acoustic field with the absorbing material, as one of the methods which can control the acoustic in optional space. In that case of passive control using this absorption material, it would be important to maximize the control performance of material property, numbers, geometry shape and the attached location of boundary area of the absorbing material. But realistically these variables, specially material Property, have no broad choice. Therefore, the position of absorbing material is the most important variable. In this study, we use the optimization method to minimize acoustic energy of optional space in the interest frequency attaching some absorbing materials to the boundary area. For analysis and optimization, this study uses the FEA and the conjugate gradient method. This optimization process is very efficient and useful in the passive acoustic control.

Variable Acoustics in performance venues- A review (공연장에서의 가변음향에 대한 고찰)

  • Hyon, Jinoh;Jeong, Daeup
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.6
    • /
    • pp.626-648
    • /
    • 2021
  • Domestically, demands for multi-purpose performance venues which accommodate various performance genres have increased. However, those venues have limited capability and confined to a primary performance. The present work investigated various methods for controlling the acoustics of room for required performance genres by reviewing aurally presented and published materials. The method of varying the acoustics of a space is called Variable Acoustics, and adjusted in either passive and active ways. Passive control encompasses variable absorption, variable volume, coupled volume, and canopy reflectors, where the acoustics of a room is controlled in an architectural way. Active control includes In-line, Regenerative, and Hybrid systems where the acoustics of a room is manipulated electronically. The mechanism and application of each passive control system in existing venues are reviewed and their pros and cons are discussed. Also, the concept of each active systems and product applications are looked at through literature reviews. Lastly, some considerations that need to be taken into in the planning and design stage of a multi-purpose hall using Variable Acoustics are suggested.

The Electronic Ballast Design of Acoustic Resonance Free and Transient Over Current Limit for High Power MHL (음향 공명 제거 및 과도 상태 전류를 제한시킨 고출력 메탈 헬라이드 램프용 전자식 안정기 설계)

  • Kim, Ki-Nam;Park, Jong-Yun;Choi, Young-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.904-911
    • /
    • 2010
  • This paper presents the design of acoustic resonance free and over current limit during transient state consideration electronic ballast for 1.5kW Metal-Halide Lamp(MHL) that employs frequency modulation (FM) technique. The proposed ballast consists of a Full-Bridge(FB) rectifier, a passive power factor correction (PFC) circuit, a full-bridge inverter, an ignitor using LC resonance and a control circuit for frequency modulation. The frequency modulation technique is the most effective solution to eliminate acoustic resonance among other technique. It spreads power spectrum of lamp to reduce the supplied power spectrum under the energy level of eigen-value frequency. Moreover, the proposed ballast is simple and cost effective above conventional ballast. A new PFC circuit is proposed which combines with LCD type and PCSR filter. A new PFC circuit has higher PF and lower THD than conventional LCD type and secure high reliability. Finally, to protected switching components in transient state, the surge current into ballast is limited by increase the switching frequency. Performance of the proposed ballast was validated through computer simulation using Pspice, experimentation and by applying it to an electronic ballast for a prototype 1.5kW MHL.

Transmitted Noise Reduction of Piezoelectric Smart Panels using Passive/Active Method in Wide Range frequency (수동/능동적 방법을 혼용한 압전지능패널의 광대역 전달 소음저감성능)

  • 이중근;박우철
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.2 no.2
    • /
    • pp.73-79
    • /
    • 2001
  • In this paper, the transmitted noise reduction performance of piezoelectric smart panels is experimentally studied. The proposed piezoelectric smart panels are comprised of plate structure on which piezoelectric sensor/actuators are bonded and sound absorbing material is provided. It is a combination of passive and active approaches utilizing a passive effect at high frequencies and an active effect at low frequencies. To prove the concept of piezoelectric smart panels, an acoustic measurement experiment is performed. An acoustic tunnel is designed and its acoustic characteristics are tested. Below 800Hz, the tunnel exhibits a plane wave guide characteristics. When an absorbing material is bonded on a single plate, a remarkable transmitted noise reduction in mid frequency range is observed except the first resonance frequency. By enabling the active control of single smart panel with negative feedback control. about 10dB noise reduction is achieved at the resonance frequencies. The double smart panel got 4dB at the first resonance frequency and has more potential to reduce the transmitted noise in a wide range frequency. Piezoelectric smart panels incorporating passive absorbing material and active piezoelectric devices is a promising technology for noise reduction in a wide range frequency.

  • PDF

An Experimental Study on Feasibility of Actively Tuned Passive Control in a Liquid Ramjet Engine (액체 램제트 엔진에서 Actively Tuned Passive Control 가능성의 실험적 연구)

  • Song, Jae-Cheon;Song, Jin-Kwan;Hwang, Jeong-Jae;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.107-110
    • /
    • 2009
  • Combustion oscillations are caused by a coupling between acoustic waves and unsteady heat release. They can be eliminated using passive controller such as a helmholtz resonator. But, helmholtz resonator is normally only effective over a narrow frequency range. In this work, helmholtz resonator is applied for reducing the combustion oscillations and we vary the helmholtz resonator volume using piston in oder to tune in the wide range of operating conditions. As the result, it is found that the dominant combustion oscillations can be reduced by optimizing the size of resonator volume. Also, from these results, we investigate feasibility of actively tuned passive control

  • PDF

Effects of Various Baffle Designs on Acoustic Characteristics in Combustion Chamber of Liquid Rocket Engine

  • Sohn, Chae-Hoon;Kim, Seong-Ku;Kim, Young-Mog
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.145-152
    • /
    • 2004
  • Effects of various baffle designs on acoustic characteristics in combustion chamber are numerically investigated by adopting linear acoustic analysis. A hub-blade configuration with five blades is selected as a candidate baffle and five variants of baffles with various specifications are designed depending on baffle height and hub position. As damping parameters, natural-frequency shift and damping factor are considered and the damping capacity of various baffle designs is evaluated. Increase in baffle height results in more damping capacity and the hub position affects appreciably the damping of the first radial resonant mode. Depending on baffle height, two close resonant modes could be overlapped and thereby the damping factor for one resonant mode is increased exceedingly. The present procedure based on acoustic analysis is expected to be a useful tool to predict acoustic field in combustion chamber and to design the passive control devices such as baffle and acoustic resonator.

Development of New Methods for Position Estimation of Underground Acoustic Source Using a Passive SONAR System

  • Jarng, Soon-Suck;Lee, Je-Hyeong;Ahn, Heung-Gu
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.69-75
    • /
    • 2000
  • The aim of the work described in this paper is to develop a complex underground acoustic system which detects and localizes the origin of an underground hammering sound using an array of hydrophones located about 100m underground. Three different methods for the sound localization will be presented, a time-delay method, a power-attenuation method and a hybrid method. In the time-delay method, the cross correlation of the signals received from the array of sensors is used to calculate the time delays between those signals. In the power-attenuation method, the powers of the received signals provide a measure of the distances of the source from the sensors. In the hybrid method, both informations of time-delays and power-ratios are coupled together to produce better performance of position estimation. A new acoustic imaging technique has been developed for improving the hybrid method. This new acoustic imaging method shows the multi-dimensional distribution of the normalized cost function, so as to indicate the trend of the minimizing direction toward the source location. For each method the sound localization is carried out in three dimensions underground. The distance between the true and estimated origins of the source is 28m for a search area of radius 250m.

  • PDF

Bearing tracking algorithm appropriate for underwater environment (수중환경에 적합한 방위각 추적 알고리즘)

  • 허용석;김인익;박상배;이균경
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.558-563
    • /
    • 1992
  • Bearing information of target is used critically for target tracking in underwater environment. In passive sonar, target bearing measurements are obtained by processing the acoustic signal emanating from the target. PDA tracking algorithm is usually applied in this case since bearing measurements have several peaks due to interference with other acoustic sources or reflections from underwater media. In this paper, we propose a modified PDA algorithm adopting new probabilistic distributions of the number, position, and amplitude of peaks based on the analysis of real data. This algorithm is tested on real and artificially generated data. The computer simulation result shows improvement of the tracking performance.

  • PDF

Noise Reduction using Passive and Active Noise Control in the Closed Area (수동과 능동방식을 혼용한 폐공간에서 소음감쇠)

  • Cho Byung-Mo
    • Journal of IKEEE
    • /
    • v.5 no.1 s.8
    • /
    • pp.16-23
    • /
    • 2001
  • Passive noise reduction is a classical approach to attenuate industrial noise, and an active noise cancellation has several advantages over the passive noise cancellation. The active noise reduction system offers a better low frequency performance with a smaller and lighter system. This paper presents a simple active closed loop control system which consists of an controller for inverting and compensating the phase delay, a microphone for picking up the external noise, and a loudspeaker for radiating the acoustic out of phase signal to reduce the external noise, and external noise can be reduced after compensating the phase difference to be $180^{\circ}$ in the frequency of maximum value in the amplitude response. The noise of the phase delay covered from $50^{\circ}\;to\;310^{\circ}$ tends to be reduced in the active noise control system and it is possible to obtain a noise cancelling of up to approximately 20[dB] at the ears in the enclosurer.

  • PDF