• Title/Summary/Keyword: Partition panel

Search Result 20, Processing Time 0.02 seconds

Study on Structural Reliability Assessment of a Partition Panel Made of a CFRP(Carbon Fiber Reinforced Plastic) (탄소복합재 부품 파티션패널의 구조 강성/강도 신뢰성 평가에 관한 연구)

  • Lee, Jaejin;Mun, Jihun;Yoon, Wonho;Kang, Dakyung;Ahn, Minsu;Roh, Hyungjin;Kang, Jiheon;Lee, Jaewook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.10
    • /
    • pp.68-74
    • /
    • 2019
  • In the case of a partition panel for a vehicle, it is used as a vehicle chassis component that serves to distinguish the indoor and outdoor spaces of a vehicle and is mounted on a backrest portion of the vehicle's back seat to ensure the convenience of passengers by connecting the floor and the side of the vehicle. Because it is a relatively large-sized plate material among automobile chassis parts except the moving parts and non-ferrous materials can be applied, it is considered as a part having a large light-weight effect. However, the partition panel is one of the vehicle parts that must satisfy the light-weight effect as well as various structural reliability, such as torsional rigidity, vibration, and impact characteristics, for securing the running stability of the vehicle when driving at the same time. So, In this study, the possibility of replacing the aluminum partition panel as CFRP(Carbon Fiber Reinforced Plastic) partition panel is evaluated through comparing the two partition panels by using the structural reliability(stiffness/strength analysis), vibration analysis, impact analysis.

Evaluation of Sound Insulation Performance of Extruded Cement Panel with a-Hemihydrate Gypsum

  • Kim, Jin-Man;Choi, Duck-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.6
    • /
    • pp.575-585
    • /
    • 2012
  • The extruded cement panel, which has many advantages as a prefabricated method, has been limited in its application due to its low fire-resistance. However, an extruded cement panel produced by mixing a-hemihydrate gypsum offers dramatically improved fire-resistance and is expected to have wide-ranging applications in the construction sector as an interior material or partition wall between housing units. Sound insulation performance is very important for the partition wall between housing units. In this study, the sound insulation performance of the extruded cement panel produced through the mixture of a-hemihydrate gypsum is reviewed in order to determine its usability for a partition wall between housing units and for interior materials. Through the review it was found that the wall formed using the extruded cement panels produced by mixing the a-hemihydrate gypsum have ★★★ class in sound insulation test, equal or superior compared with the other two types of extruded cement panel walls currently available in the market.

Safety Evaluation of Fire Resistant Extruded Panel for Partition Wall System

  • Choi, Duck-Jin;Kim, Jin-Man
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.6
    • /
    • pp.586-595
    • /
    • 2012
  • While the extruded cement panel has many advantages compared to drywall, it has limited applicability in buildings due to its low fire resistance. However, an extruded panel in which the fire resistance has been dramatically enhanced through the addition of a-hemihydrate gypsum is expected to become widely applied as a partition wall or interior material for buildings. To ensure its applicability, certain safety requirements for use, such as the leaning load by residents, the impact by indoor articles, and the fire, need to be taken into consideration. The purpose of this study is to review the impact load resistance, horizontal load resistance, and fire resistance as required safety properties for the partition wall and interior materials of the extruded panel that includes a-hemihydrate gypsum. The results of this study show that the impact load resistance of the extruded panel that includes a-hemihydrate gypsum achieves SD grade for industrial buildings, and the horizontal impact load resistance achieves HD grade for public buildings. In addition, it provides fire-resistance for approximately 7 minutes longer than the existing extruded cement panel. Based on this result, it is confirmed the extruded panel incorporating a-hemihydrate gypsum has adequate safety properties for use as partition wall or interior material.

Structural Analysis of Composite Partition Panel according to Weaving Methods (직조 방법에 따른 복합재 파티션 패널의 구조 해석)

  • Kang, Ji Heon;Kim, Kun Woo;Jang, Jin Seok;Lee, Jae Jin;Mun, Ji Hun;Kang, Da Kyung;Ahn, Min Su;Lee, Jae Wook
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.140-146
    • /
    • 2020
  • The purpose of this paper is to examine the possibility of weight reduction by changing the partition panel of vehicle from an existing aluminum material to carbon fiber reinforced plastics. Three weaving methods (plain, twill and satin) were used in the manufacture of composite materials, and they were produced and tested to derive their material properties. The analysis model of composite partition panel for torsional conditions was developed and the structural stability and system stiffness were evaluated according to Tsai-Hill failure criteria. With design variables for fiber orientation angles and stacking sequence, evolutional optimal algorithm was performed and as the results, the optimal composite partition panel was designed. In addition, the structural analysis results for strength and specific stiffness were compared with aluminum partition panels and composite partition panels to verify the possibility of weight reduction.

A Study on Fire Hazards in Multiple Compartments with Lightweight Partition Walls (경량칸막이 벽체를 통한 다중구획공간에서의 화재위험성에 관한 연구)

  • Park, Sang-Min;Choi, Su-Gil;Jin, Se-Young;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.34 no.2
    • /
    • pp.14-21
    • /
    • 2020
  • This paper presents the study of a fire risk to the backside of two miniatures of ISO 9705 2/5 using a lightweight partition for indoor space division and reproduction of the ISO 9705 test. An SGP partition, stud partition, glass wool panel, urethane foam panel, sandwich panel, and glass partition were selected as the test specimens, which are frequently used in construction. According to the ISO 9705 test standard, stabilization was achieved using a measuring device that recorded data before the ignition of a burner and continued recording for 120 s thereafter. After ignition was achieved, the power was increased to 300 kW for 600 s and then reduced to 100 kW for 600 s. The specimens were subsequently observed for 180 s, and the fire risk to the backside and the fire pattern of the wall unit were analyzed. Owing to the amount of heat generated by the ignition source, the maximum temperature of the backside was observed to be 67.7 ℃ for the SGP partition, 55.1 ℃ for the stud partition, 52.4 ℃ for the glass wool panel, 727.4 ℃ for the sandwich panel, 561 ℃ for the urethane foam panel, and 630.5 ℃ for the glass partition. In the cases of the sandwich and urethane foam panels, the explosion of flammable gas occurred by virtue of fusion of the interior materials. The reinforced glass was fractured owing to the temperature difference between the heat- and nonheat-responsive parts. Ultimately, the fire risk to the nearby section room was deemed to be high.

Study on the Characteristics of Conduction Heat Transfer According to the Heating Temperature of a Composite Wall in a Light-weight Partition (경량칸막이 복합벽체의 가열온도에 따른 전도 열전달 특성 연구)

  • Park, Sang-Min;Choi, Su-Gil;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.60-68
    • /
    • 2019
  • The paper reports the characteristics of conduction heat transfer to the backside part according to the heating temperature of a composite wall in a lightweight partition used for indoor space compartments. Stud partitions, SGP partitions, sandwich panels, urethane foam panels, and glass wool panels. which are generally used as light-weight partition walls, were selected as experiment samples, and the characteristics of conduction heat transfer to the backside part as the top surface were analyzed by applying heating temperatures of $200^{\circ}C$, $300^{\circ}C$, $400^{\circ}C$, and $500^{\circ}C$ to the bottom surface for 1800 s. According to the experimental results, the maximum backside temperatures at the maximum heating temperature of $500^{\circ}C$ was $51.6^{\circ}C$, $63.6^{\circ}C$, $317.2^{\circ}C$, $124.9^{\circ}C$, and $42.2^{\circ}C$ for the stud partition, SGP partition, sandwich panel, urethane foam panel, and glass wool panel, respectively. The maximum conduction heat- transfer rates at $500^{\circ}C$ were 17.16 W, 18.39 W, 136.65 W, 14.34 W, and 5.57 W for the stud partition, SGP partition, sandwich panel, urethane foam, and glass wool panel, respectively.

Improvement of Sound Transmission Loss of Ship's Bulkhead at Low Frequency Range (선박 격벽의 저주파수 대역 차음성능 향상에 관한 연구)

  • Kim, Sung-Hoon;Joo, Won-Ho;Bae, Jong-Gug
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.167-168
    • /
    • 2009
  • The noise sources in ship and offshore structure have an influence on adjacent receiving area through a partition between noise sources and receiving area. The partition in ship is usually made of stiffened plate. Sound transmission loss (STL) of the partition at high frequency could be improved by additional installation of insulation or wall panel. At low frequency, however, it is very difficult and needs an increase of plate thickness which causes a considerable weight increase of ship. In this paper, we have investigated the effect of the bulkhead boundary condition. From measurement result, we found that the bulkhead boundary condition can affect a lot in STL, especially at low frequency range. Finally, we get the 5dB increase in STL through the modification of boundary condition.

  • PDF

Density and Thermal Conductivity Property of the Lightweight Composite Panel Core According to Pearlite Replacement ratio (펄라이트 치환율에 따른 경량복합패널 심재의 밀도 및 열전도율 특성)

  • Kim, Heon-Tae;Jung, Byeong-Yeol;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.175-176
    • /
    • 2014
  • Recently, in the apartment house of our country, office building, apartment, and etc, the lightweight composite panel is much used as the partition wall body. This is due to be very convenient when the execution and dismantling is convenient and it forms the space which the consumer in the space desires. Therefore, in this research, the thermal conductivity property of the lightweight composite panel core according to the replacement ratio variation of the pearlite tries to be analyze. As the density test result and replacement ratio of the pearlite increased, the density showed the tendency to rise. the replacement ratio of the pearlite increased, the absorption rate showed the tendency to fall. And this is determined that absorption rate is degraded due to the increase in the density. the thermal conductivity test result and pearlite replacement ratio increased, the tendency that the thermal conductivity increases was represented.

  • PDF

An efficient Galerkin meshfree analysis of shear deformable cylindrical panels

  • Wang, Dongdong;Wu, Youcai
    • Interaction and multiscale mechanics
    • /
    • v.1 no.3
    • /
    • pp.339-355
    • /
    • 2008
  • A Galerkin meshfree method is presented for analyzing shear deformable cylindrical panels. Based upon the analogy between the cylindrical panel and the curved beam a pure bending mode for cylindrical panel is rationally constructed. The meshfree approximation employed herein is characterized by an enhanced moving least square or reproducing kernel basis function that can exactly represent the pure bending mode and thus meets the requirement of Kirchhoff mode reproducing condition. The variational form is discretized using the efficient stabilized conforming nodal integration with a smoothed nodal gradient based curvature. The resulting meshfree formulation satisfies the integration constraint for bending exactness. Moreover, it is shown here that the smoothed gradient preserves several desired properties which are valid for the standard gradient obtained by direct differentiation, such as partition of nullity and reproduction of a constant strain field. The efficacy of the proposed approach is demonstrated by two benchmark cylindrical panel examples.

UV Immune System of Personalized Space (개별공간의 자외선 살균 시스템)

  • Jeong, Ky-Bum;Choi, Sang-Gon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.1
    • /
    • pp.63-70
    • /
    • 2009
  • The air sterilization systems are investigated experimentally in this paper. The goal is to reduce bacteria, mold and viruses in office air by using a UV sterilizer installed inside a partition panel and wall-mounted unit. These systems allow occupants to turn the system on/off and to control the incoming air speed and direction. The partition air sterilization system conditions and sterilizes the air, and then delivers the clean air into the personal task area through the partition panels, which are connected to the pressurized under-floor plenum. Room air exits through the return grills mounted on the ceiling. The wall-mounted air sterilization system sterilizes the air, and then delivers the clean air to the personal task area from the wall. In this study a full-size experimental environment is established to investigate the immunization performance of these air sterilization systems. A typical office space scale is used in this study in order to find an optimal system to achieve a sterilized healthy micro-environment. Multiple system parameters, including volume flow rate and velocity of supplied air, were regulated during the experiments. The more air contact these air sterilization systems had, the better disinfection performance. Over 90% of eradication ratios were obtained by these two air sterilization systems. The results indicate that these systems can efficiently disinfect office air contamination.