• Title/Summary/Keyword: Partition model

Search Result 306, Processing Time 0.026 seconds

Partition method of wall friction and interfacial drag force model for horizontal two-phase flows

  • Hibiki, Takashi;Jeong, Jae Jun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1495-1507
    • /
    • 2022
  • The improvement of thermal-hydraulic analysis techniques is essential to ensure the safety and reliability of nuclear power plants. The one-dimensional two-fluid model has been adopted in state-of-the-art thermal-hydraulic system codes. Current constitutive equations used in the system codes reach a mature level. Some exceptions are the partition method of wall friction in the momentum equation of the two-fluid model and the interfacial drag force model for a horizontal two-phase flow. This study is focused on deriving the partition method of wall friction in the momentum equation of the two-fluid model and modeling the interfacial drag force model for a horizontal bubbly flow. The one-dimensional momentum equation in the two-fluid model is derived from the local momentum equation. The derived one-dimensional momentum equation demonstrates that total wall friction should be apportioned to gas and liquid phases based on the phasic volume fraction, which is the same as that used in the SPACE code. The constitutive equations for the interfacial drag force are also identified. Based on the assessments, the Rassame-Hibiki correlation, Hibiki-Ishii correlation, Ishii-Zuber correlation, and Rassame-Hibiki correlation are recommended for computing the distribution parameter, interfacial area concentration, drag coefficient, and relative velocity covariance of a horizontal bubbly flow, respectively.

Bayesian analysis of random partition models with Laplace distribution

  • Kyung, Minjung
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.5
    • /
    • pp.457-480
    • /
    • 2017
  • We develop a random partition procedure based on a Dirichlet process prior with Laplace distribution. Gibbs sampling of a Laplace mixture of linear mixed regressions with a Dirichlet process is implemented as a random partition model when the number of clusters is unknown. Our approach provides simultaneous partitioning and parameter estimation with the computation of classification probabilities, unlike its counterparts. A full Gibbs-sampling algorithm is developed for an efficient Markov chain Monte Carlo posterior computation. The proposed method is illustrated with simulated data and one real data of the energy efficiency of Tsanas and Xifara (Energy and Buildings, 49, 560-567, 2012).

Dynamic Island Partition for Distribution System with Renewable Energy to Decrease Customer Interruption Cost

  • Zhu, Junpeng;Gu, Wei;Jiang, Ping;Song, Shan;Liu, Haitao;Liang, Huishi;Wu, Ming
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2146-2156
    • /
    • 2017
  • When a failure occurs in active distribution system, it will be isolated through the action of circuit breakers and sectionalizing switches. As a result, the network might be divided into several connected components, in which distributed generations could supply power for customers. Aimed at decreasing customer interruption cost, this paper proposes a theoretically optimal island partition model for such connected components, and a simplified but more practical model is also derived. The model aims to calculate a dynamic island partition schedule during the failure recovery time period, instead of a static islanding status. Fluctuation and stochastic characteristics of the renewable distributed generations and loads are considered, and the interruption cost functions of the loads are fitted. To solve the optimization model, a heuristic search algorithm based on the hill climbing method is proposed. The effectiveness of the proposed model and algorithm is evaluated by comparing with an existing static island partitioning model and intelligent algorithms, respectively.

Turbulent natural convective heat transfer charateristics in a square enclosure with control plates attached at the horifontal partition (제어판이 부착된 수평격판에 의해 분리되는 밀폐공간내의 난류 자연대류 열전달 특성)

  • 김점수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.2
    • /
    • pp.150-160
    • /
    • 2000
  • Turbulent natural convective flow and heat transfer in a square enclosure with horizontal partition are investigated numerically. The enclosure is composed of a lower hot and a upper cold horizontal walls and adiabatic vertical walls. Partitions carried with the upward, downward, and both control plates are attached perpendicularly to the one of the vertical insulated walls, respectively. The low Reynolds number $k-\varepsilon$ model is adopted to calculate the turbulent thermal convection. The governing equations are solved by using the finite element method with Galerkin method. The computations have been carried out by varying the length of partition, the position of control plates, and the Rayleigh number based on the temperature difference between two horizontal walls and the enclosure height for water(Pr=4.95). When the control plates are attached at the edge of partition, the stability of oscillating flow grows wrose with the increase of Rayleigh number and the partition length. The heat transfer rate has been reducer than that of no control plate due to the restraint of control plates with the increase of Rayleigh number.

  • PDF

A Study on Heat Source Model to High Efficiency Speed Grinding (고능률 고속연삭에서 열원 모델에 관한 연구)

  • 김남경
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.3
    • /
    • pp.1-6
    • /
    • 2001
  • An analytical thermal model of HESG(higt efficiency speed grinding) is presented, in which the heat flux to workpiece in grinding zone is modeled as time dependent and moves along a slope decided by contact chord(approximation of con-tact arc). By matching the maximum surface temperature of workpiece derived from this model to the maximum surface temperature of grinding wheel composite as done in Lavins simple thermal model, the relation of maximum surface tem-perature and energy partition of workpiece to grinding speed is obtained. In high speed grinding, as wheel speed increases, energy partition decreases with no regard to table speed.

  • PDF

Justifying the Fraction Division Algorithm in Mathematics of the Elementary School (초등학교 수학에서 분수 나눗셈의 알고리즘 정당화하기)

  • Park, Jungkyu;Lee, Kwangho;Sung, Chang-geun
    • Education of Primary School Mathematics
    • /
    • v.22 no.2
    • /
    • pp.113-127
    • /
    • 2019
  • The purpose of this study is to justify the fraction division algorithm in elementary mathematics by applying the definition of natural number division to fraction division. First, we studied the contents which need to be taken into consideration in teaching fraction division in elementary mathematics and suggested the criteria. Based on this research, we examined whether the previous methods which are used to derive the standard algorithm are appropriate for the course of introducing the fraction division. Next, we defined division in fraction and suggested the unit-circle partition model and the square partition model which can visualize the definition. Finally, we confirmed that the standard algorithm of fraction division in both partition and measurement is naturally derived through these models.

A Communication and Computation Overlapping Model through Loop Sub-partitioning and Dynamic Scheduling in Data Parallel Programs (데이타 병렬 프로그램에서 루프 세부 분할 및 동적 스케쥴링을 통한 통신과 계산의 중첩 모델)

  • Kim, Jung-Hwan;Han, Sang-Yong;Cho, Seung-Ho;Kim, Heung-Hwan
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.1
    • /
    • pp.23-33
    • /
    • 2000
  • We propose a model which overlaps communication with computation for efficient communication in the data-parallel programming paradigm. The overlapping model divides a given loop partition into several sub-partitions to obtain computation which can be overlapped with communication. A loop partition sometimes refers to other data partitions, but not all iterations in the loop partition require non-local data. So, a loop partition may be divided into a set of loop iterations which require non-local data, and a set of loop iterations which do not. Each loop sub-partition is dynamically scheduled depending on associated message arrival, The experimental results for a few benchmarks in IBM SP2 show enhanced performance in our overlapping model.

  • PDF

Nonlinear Characteristics of Fuzzy Scatter Partition-Based Fuzzy Inference System

  • Park, Keon-Jun;Huang, Wei;Yu, C.;Kim, Yong K.
    • International journal of advanced smart convergence
    • /
    • v.2 no.1
    • /
    • pp.12-17
    • /
    • 2013
  • This paper introduces the fuzzy scatter partition-based fuzzy inference system to construct the model for nonlinear process to analyze nonlinear characteristics. The fuzzy rules of fuzzy inference systems are generated by partitioning the input space in the scatter form using Fuzzy C-Means (FCM) clustering algorithm. The premise parameters of the rules are determined by membership matrix by means of FCM clustering algorithm. The consequence part of the rules is represented in the form of polynomial functions and the parameters of the consequence part are estimated by least square errors. The proposed model is evaluated with the performance using the data widely used in nonlinear process. Finally, this paper shows that the proposed model has the good result for high-dimension nonlinear process.

Influence Analysis of Deep Excavation on the Nearby Undercrossing Road by Centrifuge Model Test

  • Huang, Hongwei;Xie, Xiongyao
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.395-406
    • /
    • 2008
  • An excavation with the depth of 32.7m will be constructed as a ventilation shaft in Shanghai metro Line 9. The excavation induced effect on a nearby undercrossing road in operation must be properly evaluated. A centrifuge model test was conducted to study the impact of deep excavation on this existing undercrossing. Detail simulation works are described in this paper. The excavation steps could be simulated in the no-stop state of centrifuge machine. And induced settlements of the undercrossing road in both parallel and vertical directions were analyzed. Protective partition cement soil piles were also simulated in the tests. Simulation test shows deep excavation has a great influence on undercrossing road and the partition pile can obviously deduce the influence.

  • PDF

Development of a Linear Stability Analysis Model for Vertical Boiling Channels Connecting with Unheated Risers

  • Hwang, Dae-Hyun;Yoo, Yeon-Jong;Zee, Seong-Quun
    • Nuclear Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.572-585
    • /
    • 1999
  • The characteristics of two-phase flow instability in a vertical boiling channel connecting with an unheated riser are investigated through the linear stability analysis model. Various two-phase flow models, including thermal non-equilibrium effects, are taken into account for establishing a physical model in the time domain. A classical approach to the frequency response method is adopted for the stability analysis by employing the D-partition method. The adequacy of the linear model is verified by evaluating experimental data at high quality conditions. It reveals that the flow-pattern-dependent drift velocity model enhances the prediction accuracy while the homogeneous equilibrium model shows the most conservative predictions. The characteristics of density wave oscillations under low-power and low-quality conditions are investigated by devising a simple model which accounts for the gravitational and frictional pressure losses along the channel. The necessary conditions for the occurrences of type-I instability and flow excursion are deduced from the one-dimensional D-partition analysis. The parametric effects of some design variables on low quality oscillations are also investigated.

  • PDF