• Title/Summary/Keyword: Partition Interval Selection

Search Result 7, Processing Time 0.02 seconds

Threshold Selection Method in Gray Images Based on Interval-Valued Fuzzy Sets (구간값 퍼지집합을 이용한 그레이 영상에서의 임계값 선택방법)

  • Son, Chang-S.;Chung, Hwan-M.;Seo, Suk-T.;Kwon, Soon-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.4
    • /
    • pp.443-450
    • /
    • 2007
  • In this paper, we propose a novel threshold selection method based on statistical information on gray-levels of given images and interval-valued fuzzy sets. In the proposed threshold selection method, the interval-valued fuzzy set is used to represent more definitely the relationship between a pixel and its belonging region, that is, the object and the background. Also the statistical information on gray-level is used to determine the rules and partitions of interval-valued fuzzy sets. To show the validity of the proposed method, we compared the performance of the proposed with those of conventional methods such as Otsu's method, Huang and Wang's method applied to 5 test images with various types of histograms.

An Optimized Iterative Semantic Compression Algorithm And Parallel Processing for Large Scale Data

  • Jin, Ran;Chen, Gang;Tung, Anthony K.H.;Shou, Lidan;Ooi, Beng Chin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2761-2781
    • /
    • 2018
  • With the continuous growth of data size and the use of compression technology, data reduction has great research value and practical significance. Aiming at the shortcomings of the existing semantic compression algorithm, this paper is based on the analysis of ItCompress algorithm, and designs a method of bidirectional order selection based on interval partitioning, which named An Optimized Iterative Semantic Compression Algorithm (Optimized ItCompress Algorithm). In order to further improve the speed of the algorithm, we propose a parallel optimization iterative semantic compression algorithm using GPU (POICAG) and an optimized iterative semantic compression algorithm using Spark (DOICAS). A lot of valid experiments are carried out on four kinds of datasets, which fully verified the efficiency of the proposed algorithm.

Effects of Single Nucleotide Polymorphism Marker Density on Haplotype Block Partition

  • Kim, Sun Ah;Yoo, Yun Joo
    • Genomics & Informatics
    • /
    • v.14 no.4
    • /
    • pp.196-204
    • /
    • 2016
  • Many researchers have found that one of the most important characteristics of the structure of linkage disequilibrium is that the human genome can be divided into non-overlapping block partitions in which only a small number of haplotypes are observed. The location and distribution of haplotype blocks can be seen as a population property influenced by population genetic events such as selection, mutation, recombination and population structure. In this study, we investigate the effects of the density of markers relative to the full set of all polymorphisms in the region on the results of haplotype partitioning for five popular haplotype block partition methods: three methods in Haploview (confidence interval, four gamete test, and solid spine), MIG++ implemented in PLINK 1.9 and S-MIG++. We used several experimental datasets obtained by sampling subsets of single nucleotide polymorphism (SNP) markers of chromosome 22 region in the 1000 Genomes Project data and also the HapMap phase 3 data to compare the results of haplotype block partitions by five methods. With decreasing sampling ratio down to 20% of the original SNP markers, the total number of haplotype blocks decreases and the length of haplotype blocks increases for all algorithms. When we examined the marker-independence of the haplotype block locations constructed from the datasets of different density, the results using below 50% of the entire SNP markers were very different from the results using the entire SNP markers. We conclude that the haplotype block construction results should be used and interpreted carefully depending on the selection of markers and the purpose of the study.

Statistical Information-Based Hierarchical Fuzzy-Rough Classification Approach (통계적 정보기반 계층적 퍼지-러프 분류기법)

  • Son, Chang-S.;Seo, Suk-T.;Chung, Hwan-M.;Kwon, Soon-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.6
    • /
    • pp.792-798
    • /
    • 2007
  • In this paper, we propose a hierarchical fuzzy-rough classification method based on statistical information for maximizing the performance of pattern classification and reducing the number of rules without learning approaches such as neural network, genetic algorithm. In the proposed method, statistical information is used for extracting the partition intervals of antecedent fuzzy sets at each layer on hierarchical fuzzy-rough classification systems and rough sets are used for minimizing the number of fuzzy if-then rules which are associated with the partition intervals extracted by statistical information. To show the effectiveness of the proposed method, we compared the classification results(e.g. the classification accuracy and the number of rules) of the proposed with those of the conventional methods on the Fisher's IRIS data. From the experimental results, we can confirm the fact that the proposed method considers only statistical information of the given data is similar to the classification performance of the conventional methods.

Design of Multiple Model Fuzzy Predictors using Data Preprocessing and its Application (데이터 전처리를 이용한 다중 모델 퍼지 예측기의 설계 및 응용)

  • Bang, Young-Keun;Lee, Chul-Heui
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.173-180
    • /
    • 2009
  • It is difficult to predict non-stationary or chaotic time series which includes the drift and/or the non-linearity as well as uncertainty. To solve it, we propose an effective prediction method which adopts data preprocessing and multiple model TS fuzzy predictors combined with model selection mechanism. In data preprocessing procedure, the candidates of the optimal difference interval are determined based on the correlation analysis, and corresponding difference data sets are generated in order to use them as predictor input instead of the original ones because the difference data can stabilize the statistical characteristics of those time series and better reveals their implicit properties. Then, TS fuzzy predictors are constructed for multiple model bank, where k-means clustering algorithm is used for fuzzy partition of input space, and the least squares method is applied to parameter identification of fuzzy rules. Among the predictors in the model bank, the one which best minimizes the performance index is selected, and it is used for prediction thereafter. Finally, the error compensation procedure based on correlation analysis is added to improve the prediction accuracy. Some computer simulations are performed to verify the effectiveness of the proposed method.

Fast Algorithm for 360-degree Videos Based on the Prediction of Cu Depth Range and Fast Mode Decision

  • Zhang, Mengmeng;Zhang, Jing;Liu, Zhi;Mao, Fuqi;Yue, Wen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.3165-3181
    • /
    • 2019
  • Spherical videos, which are also called 360-degree videos, have become increasingly popular due to the rapid development of virtual reality technology. However, the large amount of data in such videos is a huge challenge for existing transmission system. To use the existing encode framework, it should be converted into a 2D image plane by using a specific projection format, e.g. the equi-rectangular projection (ERP) format. The existing high-efficiency video coding standard (HEVC) can effectively compress video content, but its enormous computational complexity makes the time spent on compressing high-frame-rate and high-resolution 360-degree videos disproportionate to the benefits of compression. Focusing on the ERP format characteristics of 360-degree videos, this work develops a fast decision algorithm for predicting the coding unit depth interval and adaptive mode decision for intra prediction mode. The algorithm makes full use of the video characteristics of the ERP format by dealing with pole and equatorial areas separately. It sets different reference blocks and determination conditions according to the degree of stretching, which can reduce the coding time while ensuring the quality. Compared with the original reference software HM-16.16, the proposed algorithm can reduce time consumption by 39.3% in the all-intra configuration, and the BD-rate increases by only 0.84%.

The application of fuzzy spatial overlay method to the site selection using GSIS (GSIS를 이용한 입지선정에 있어 퍼지공간중첩기법의 적용에 관한 연구)

  • 임승현;조기성
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.2
    • /
    • pp.177-187
    • /
    • 1999
  • Up to date, in many application fields of GSIS, we usually have used vector-based spatial overlay or grid-based spatial algebra for extraction and analysis of spatial data. But, because these methods are based on traditional crisp set, concept which is used these methods. shows that many kinds of spatial data are partitioned with sharp boundary. That is not agree with spatial distribution pattern of data in the real world. Therefore, it has a error that a region or object is restricted within only one attribution (One-Entity-one-value). In this study, for improving previous methods that deal with spatial data based on crisp set, we are suggested to apply into spatial overlay process the concept of fuzzy set which is good for expressing the boundary vagueness or ambiguity of spatial data. two methods be given. First method is a fuzzy interval partition by fuzzy subsets in case of spatially continuous data, and second method is fuzzy boundary set applied on categorical data. with a case study to get a land suitability map for the development site selection of new town, we compared results between Boolean analysis method and fuzzy spatial overlay method. And as a result, we could find out that suitability map using fuzzy spatial overlay method provide more reasonable information about development site of new town, and is more adequate type in the aspect of presentation.

  • PDF