Abstract
In this paper, we propose a novel threshold selection method based on statistical information on gray-levels of given images and interval-valued fuzzy sets. In the proposed threshold selection method, the interval-valued fuzzy set is used to represent more definitely the relationship between a pixel and its belonging region, that is, the object and the background. Also the statistical information on gray-level is used to determine the rules and partitions of interval-valued fuzzy sets. To show the validity of the proposed method, we compared the performance of the proposed with those of conventional methods such as Otsu's method, Huang and Wang's method applied to 5 test images with various types of histograms.
본 논문에서는 주어진 영상의 그레이 레벨에 대한 통계적 정보와 구간값 퍼지집합에 기반을 둔 새로운 임계값 선택 방법을 제안한다. 제안한 임계값 선택 방법에서 구간값 퍼지집합은 영상의 픽셀과 그들이 속하는 영역, 즉 물체와 배경 간의 관계를 더욱 명확하게 나타내기 위해서 사용되고, 통계적 정보는 구간값 퍼지집합의 규칙과 파티션을 결정하기 위해서 이용된다. 제안한 방법의 타당성을 보이기 위해 다양한 형태의 히스토그램을 가진 5개의 테스트 영상들을 기존의 임계값 선택방법인 Otsu 방법과 Huang과 Wang의 방법과 비교하였다.