• Title/Summary/Keyword: Particulate organic matter (POM)

Search Result 32, Processing Time 0.017 seconds

Chemical Fluxes at the Sediment-Water Interface Below Marine Fish Cages on the Coastal Waters off Tong-Young, South Coast of Korea (남해안 통영지역 가두리양식장 해수-퇴적물 경계면에서의 chemical fluxes)

  • Shim, Jeong-Hee;Kang, Young-Chul;Choi, Jin-Woo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.2 no.2
    • /
    • pp.151-159
    • /
    • 1997
  • Benthic respiration and chemical fluxes were measured at the sediment-water interface underlying the marine fish cages floating on the open coastal waters off Tong-Young, the South Coast of Korea. The effects of cage farming on coastal benthic environment and on mass balance of organic carbon in the benthic boundary layer under the marine fish cages are addressed. In a growing season of caged fishes of June, 1995, benthic chambers and sediment traps were deployed on the sediment-water interfaces of the two sites chosen for this study: 1) Cage Site, directly underlying the fish cages of the farm at 18 m water depth, and 2) Control Site, about 100 m away from the farm at 32 m water depth. Benthic respiration rates and chemical fluxes were calculated from the evolution of dissolved oxygen and chemicals in the chamber water, and mass balance of organic carbon in the benthic boundary layer was constructed based on the vertical flux of particulate organic matter (POM) and chemical fluxes out of the sediment. High organic dumping (6400 mg C $m^{-2}d^{-1}$) and high benthic respiration (230 mmol $O_2\;m^{-2}d^{-1}$) were observed at the Cage Site. Equivalent to 40% of vertical flux of organic carbon into the Cage Site seemed to be decomposed concurrently and released back to overlying waters (2400 mg C $m^{-2}d^{-1}$). Consequently, up to 4000 mg C $m^{-2}d^{-1}$ of organic carbon could be buried into the farm sediment (equivalent to 60% of organic carbon flux into the Cage Site). At the Control Site, relatively less input of organic carbon (4000 mg C $m^{-2}d^{-1}$) and low benthic respiration rate (75 mmol $O_2\;m^{-2}d^{-1}$) were observed despite short distance away from the cages. The influence of cage farming on benthic chemical fluxes might be restricted and concentrated in the sea bottom just below the fish cages in spite of massive organic dumping and high current regime around the fish cage farm.

  • PDF

Food Sources of the Ascidian Styela clava Cultured in Suspension in Jindong Bay of Korea as Determined by C and N Stable Isotopes (탄소 및 질소안정동위원소 조성에 의한 남해안 진동만 양식 미더덕의 먹이원 평가)

  • Moon, Changho;Park, Hyun Je;Yun, Sung Gyu;Kwak, Jung Hyun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.4
    • /
    • pp.302-307
    • /
    • 2014
  • To examine the trophic ecology of the ascidian Styela clava in an aquaculture system of Korea, stable carbon and nitrogen isotopes were analyzed monthly in S. clava, coarse ($>20{\mu}m$, CPOM) and fine particulate organic matters ($0.7<<20{\mu}m$, FPOM). CPOM (means: $-18.5{\pm}1.2$‰, $9.3{\pm}0.7$‰) were significantly higher ${\delta}^{13}C$ and ${\delta}^{15}N$ values than those ($-20.5{\pm}1.5$‰, $8.4{\pm}0.5$‰) of FPOM. S. clava had mean ${\delta}^{13}C$ and ${\delta}^{15}N$ values of $-18.9({\pm}1.7)$‰ and $11.6({\pm}0.7)$‰, respectively. S. clava were more similar to seasonal variations in ${\delta}^{13}C$ and ${\delta}^{15}N$ values of FPOM than those of CPOM, suggesting that they rely largely on the FPOM as a dietary source. In addition, our results displayed that the relative importance between CPOM and FPOM as dietary source for the ascidians can be changed according to the availability of each component in ambient environment, probably reflecting their feeding plasticity due to non-selective feeding irrespective of particle size. Finally, our results suggest that dynamics of pico- and nano-size plankton (i.e., FPOM) as an available nutritional source to S. clava should be effectively assessed to maintain and manage their sustainable aquaculture production.