• Title/Summary/Keyword: Particulate organic C

Search Result 112, Processing Time 0.031 seconds

Effect of Heat Treatment of Sewage Sludge on Solubilization and Thermophilic Acid fermentation efficinecy (하수슬러지의 열처리에 의한 가용화효과 및 고온산발효의 분해효율에 미치는 영향 평가)

  • Park, Yongjin;Tsuno, Hiroshi;Hidaka, Taira;Kim, SeogKu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.2
    • /
    • pp.89-97
    • /
    • 2007
  • In this study, thermalpretreatment was used to solubilize organic matter contained in sewage sludge before acid fermentation. By thermal pretreatment, solubilization of particulate CODcr, carbohydrate and protein increased. By thermal treatment at $120^{\circ}C$ for 30 minutes, CODcr solubilization efficiency of the primary sludge reached 8.3%. Meanwhile, for the secondary sludge, CODcr solubilization efficiency reached 16.5% because of high solubilization ratio of protein under the same pretreatment conditon. The results of anaerobic biodegradability test showed that both VFAs conversion ratio and hydrolysis rate of organic compounds in sewage sludge were improved by thermal pretreatment. Meanwhile, the optimum thermal pretreatment condition was varied with composition of organic compounds in sludge. In this study, the optimun thermal pretreatment condition of the primary sludge, containing high concentration of carbohydrate, was $80^{\circ}C$ for 30 minutes. Meanwhile, for the secondary sludge, mainly composed of protein, the sludge treated at $120^{\circ}C$ for 30 minutes showed the effective organic removal and VFAs production.

  • PDF

EMISSION CHARACTERISTICS IN ULTRA LOW SULFUR DIESEL

  • Oh, S.-K.;Baik, D.-S.;Han, Y.C.
    • International Journal of Automotive Technology
    • /
    • v.4 no.2
    • /
    • pp.95-100
    • /
    • 2003
  • Automobile industry has been developed rapidly as a key manufacturing industry in Korea. Meanwhile, air pollution is getting worse noticeably than ever. In the diesel emission, PM (Particulate Matter) and NOx (Nitrogen Oxides) have been exhausted with a great amount and the corresponding emission regulations are getting stringent. In order to develop low emission engines, it is necessary to research on better qualified fuels. Sulfur contained in fuel is transformed to sulfur compound by DOC (Diesel Oxidation Catalyst) and then it causes to the increase of sulfate-laden PM on the surface of catalyst. In this research, ULSD (Ultra Low Sulfur Diesel) is used as a fuel and some experimental results are investigated. ULSD can reduce not only PM but also gas materials because cetane value, flash point, distillation 90%, pour point and viscosity are improved in the process of desulfurization. However, excessively reduced sulfur may cause to decease lubricity of fuel and engine performance in fuel injection system. Therefore, it requires only modest adjusted amount of sulfur can improve engine performance and DOC, as well as decrease of emission.

Photoelectrochemical and Hydrogen Production Characteristics of CdS-TiO2 Nanocomposite Photocatalysts Synthesized in Organic Solvent (유기용매상에서 제조된 수소제조용 CdS-TiO2 나노복합 광촉매의 특성 연구)

  • Jang, Jum-Suk;So, Won-Wook;Kim, Kwang-Je;Moon, Sang-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.3
    • /
    • pp.224-232
    • /
    • 2002
  • CdS-$TiO_2$ nano-composite sol was prepared by the sol-gel method in organic solvents at room temperature and further hydrothermal treatment at various temperatures to control the physical properties of the primary particles. Again, CdS-$TiO_2$ composite particulate films were made by casting CdS-$TiO_2$ sols onto $F:SnO_2$ conducting glass and then heat-treatment at $400^{\circ}C$. Physical properties of these 61ms were further controlled by the surface treatment with $TiCl_4$, aqueous solution. The photo currents and hydrogen production rates measured under the experimental conditions varied according to the $CdS/[CdS+TiO_2]$ mole ratio and the mixed-sol preparation method. For $CdS-TiO_2$ composite sols prepared in IPA, CdS particles were homogeneously surrounded by $TiO_2$ particles. Also, the surface treatment with $TiCl_4$ aqueous solution caused a considerable improvement in the photocatalytic activity, probably as a result of close contacts between the primary particles by the etching effect of $TiCl_4$. It was found that the photoelectrochemical performance of these particulate films could be effectively enhanced by this approach.

Spatial Characteristic in Food Sources for Benthic Invertebrates in an Estuary Tidal flat: Carbon and Nitrogen Stable Isotope Analyses (안정동위원소 비를 이용한 하구 갯벌에 있어서 저서 무척추 동물의 유기물 기원의 공간적 특성)

  • Shin, Woo-Seok;Lee, Yong-Doo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.1
    • /
    • pp.53-59
    • /
    • 2010
  • The spatial variability in the food chain structure of an estuarine environment(Nanakita estuarine, Japan) was investigated using stable carbon and nitrogen isotope. Potential organic matter sources(TP:Terrstrial Plant, MPOM:Marine particulate organic matter, BMA:Benthic microalgae, EPOM:Estuarine particulate organic matter), sedimentary organic matter and benthic invertebrates(Nuttallia olivacea and Nereidae) were sampled at four locations with different tidal flat types(e.g. sanddy, sanddy-muddy and muddy). The main objective of the present study was to determine food sources of Nuttallia olivacea and Nereidae along with small-scale spatial variability within the community of benthic invertebrates. TP(${\delta}^{13}C=-26.6{\pm}0.76$ and ${\delta}^{15}N=2.7{\pm}0.31$) and EPOM(${\delta}^{13}C=-25.5{\pm}0.13$ and ${\delta}^{15}N=5.2{\pm}0.46$) were isotopically distinct from BMA(${\delta}^{13}C=-16.3$ and ${\delta}^{15}N=6.2$) and MPOM(${\delta}^{13}C=-19.6{\pm}0.08$ and ${\delta}^{15}N=8.9{\pm}1.70$). ${\delta}^{13}C$ values of sedimentary organic matter showed a distinct gradient in the range of -27.4 to -22.8‰ with a declining trend from the upstream to the downstream stations. The stable carbon and nitrogen isotope values of benthic invertebrates in the study site was -22.8 to -18.4‰ for ${\delta}^{16}C$ and 8.1 to 11.9‰ or ${\delta}^{15}N$, respectively. Mixing model(Isosource) calculations based on stable isotope measurements showed that benthic invertebrates of Nuttallia olivacea and Nereidae were found to be dominated by MPOM and BMA in stations. Whereas, TP and EPOM showed little influence to benthic invertebrates. The current result suggests that the different contribution for benthic invertebrates should be affected by both seasonal variation and physical factor among stations.

Instrumentation of a Thermal-Optical Carbon Analyzer and Its Sensitivity in Organic and Elemental Carbon Determination to Analysis Protocols

  • Lim, Ho-Jin;Sung, Su-Hwan;Yi, Sung-Sin;Park, Jun-Hyun
    • Journal of Environmental Science International
    • /
    • v.21 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • A thermal-optical transmittance carbon analyzer has been developed to determine particulate organic (OC) and elemental (EC) carbon. Several analysis factors affecting the sensitivity of OC and EC determination were investigated for the carbon analyzer. Although total carbon (TC) is usually consistent in the determination, OC and EC split is sensitive to adopted analysis protocol. In this study the maximum temperature in oxygen-free He in the analysis was examined as a main cause of the uncertainty. Prior to the sensitivity analysis consistency in OC-EC determination of the carbon analyzer and the uniformity of carbonaceous aerosol loading on a sampled filter were checked to be in acceptable range. EC/TC ratios were slightly decreased with increasing the maximum temperature between $550-800^{\circ}C$. For the increase of maximum temperature from $500^{\circ}C$ to $800^{\circ}C$, the EC/TC ratio was lowered by 4.65-5.61% for TC loading of 13-44 ${\mu}g/cm^2$ with more decrease at higher loading. OC and EC determination was not influenced by trace amount of oxygen in pure He (>99.999%), which is typically used in OC and EC analysis. The facing of sample loaded surface to incident laser beam showed negligible influence in the OC-EC split, but it caused elevated PC fraction in OC for forward facing relative to backward facing.

The Distribution of Nitrogen and the Decomposition Rate of Organic Nitrogen in the Youngsan River and the Sumjin River, Korea (영산강과 섬진강 수계의 질소 분포와 유기질소 분해속도)

  • Kim, Jihye;Kim, Bomchul;Shin, Myoungsun;Kim, Jaiku;Jung, Sungmin;Lee, Yunkyoung;Park, Juhyun
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.142-150
    • /
    • 2009
  • The distribution of organic nitrogen and its decomposition rate were studied in the Youngsan River and the Sumjin River system in Korea. Samples were conducted seasonally in June, August, December of 2006, and February of 2007. Collected samples were incubated for 20 days in a dark chamber ($20{\pm}1^{\circ}C$) and analyzed the changes of nitrogen form (particulate organic nitrogen, dissolved organic nitrogen, ammonia, nitrite, and nitrate). The mean total nitrogen (TN) concentration in the Youngsan River and the Sumjin River were $2.62mgN{\cdot}L^{-1}$ and $1.53mgN{\cdot}L^{-1}$, respectively. TN comprised of 65% DIN and 35% ON. The decomposition coefficients of organic nitrogen were also determined by two different fitting models. The decomposition rates of nitrogen species (TON, LPON, LDON, ${NH_4}^+$ and ${NO_2}^-$) ranged from 0.024 to $1.043day^{-1}$ in the Youngsan River and 0.008 to $0.693day^{-1}$ in the Sumjin River, respectively. The result of this study can give a guide to the selection of parameters in the calibration processes of water quality models.

Geochemical Characteristics of Scirpus planiculmis Habitats in Nakdong Estuary, Korea (낙동강 하구 새섬매자기 군락지 지화학 연구)

  • Kim, Yunji;Kang, Jeongwon;Choi, Jae Ung;Park, Chan Mi;Woo, Han Jun
    • Journal of Wetlands Research
    • /
    • v.21 no.2
    • /
    • pp.125-131
    • /
    • 2019
  • The Nakdong Estuary has experienced hydraulic and topographic changes over the last century, which have had negative effects of habitat loss and fragmentation. The population of Scirpus planiculmis, a major food plant for wintering birds in Nakdong Estuary, has decreased over the last decade. To identify factors that influence S. planiculmis population, 6 short core samples (about 30cm) were collected in June and August, 2018. The sand percentage was over 80% in every samples and the average sediment salinity in June and August were $17.8{\pm}1.12psu$ and $18.4{\pm}1.83psu$, respectively. ${\delta}^{13}C$ of sediment cores varied from -25.4‰ to -22.6‰ which fall within the estuarine particulate organic matters. In cores collected in Eulsuk area, the highest ${\delta}^{13}C$ values were observed at the surface (0~1cm) indicating inputs of marine POM (particulate organic matter) to the Nakdong Estuary. No significant difference between vegetation and non-vegetation stations was observed in every items we investigated which might indicate that the physicochemical environment of vegetation area is almost same as that of non-vegetation area. Therefore, the high sand percentage and sediment salinity of Nakdong Estuary might affect the reduction in S. planiculmis population.

Physicochemical Characteristics of Particulate Matter Emissions of Different Vehicles' Fuel Types (자동차 연료유형에 따른 배출 입자상 물질의 화학적 특성)

  • Son, Jihwan;Kim, Jounghwa;Park, Gyutae;Kim, Sunmoon;Hong, Heekyoung;Moon, Sunhee;Park, Taehyun;Kang, Seokwon;Sung, Kijae;Chung, Taekho;Kim, Ingu;Kim, KyungHoon;Yu, Dong-Gil;Choi, Kwangho;Kim, Jeong Soo;Lee, Taehyoung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.6
    • /
    • pp.593-602
    • /
    • 2016
  • The physicochemical characteristics of particulate matter emissions from various vehicle's fuel types were studied at the facility of Transport Pollution Research Center(TPRC), National Institute of Environmental Research (NIER), Korea. Three different types of fuels such as gasoline, liquefied petroleum gas (LPG) and diesel were tested on the NIER driving mode and the constant speed modes(30, 70, and 110 km/h). Chemical composition of submicron particles from vehicle emissions was measured by the High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) during running cycles. Organics were dominant chemical species of particulate matter emissions for all three different vehicles' fuel types. Moreover, regardless of fuel types, emission rate of organics and inorganics decreased as the average speed of vehicle increased. The portion of fully oxidized fragment families of $C_xH_yO_z$ accounted for over 98% of organic aerosol(OA) in LPG and diesel vehicles, while the relatively high fraction of $C_xH_y$ in OA was observed in gasoline vehicle.

Daily Variation of Particulate Organic Carbon in Wonmun Bay on the South Coast of Korea in Late Summer (늦여름 원문만 굴양식장 입자유기탄소의 일변동)

  • KANG Chang-Keun;LEE Pil-Yong;KIM Pyoung-Joong;CHOI Hee-Gu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.26 no.3
    • /
    • pp.279-287
    • /
    • 1993
  • Daily variation of particulate organic carbon(POC) and some factors controlling its level were examined for a semi-enclosed bay(Wonmun Bay, south coast of Korea), in which a lot of suspended oyster culture farms existed, in September, 1992. Observations were made at hourly interval. In spite of the relatively short survey period, strong short-term variation of POC concentration could be observed. Concentrations of POC were the range of $58{\sim}582{\mu}g/l(average 272{\mu}g/l)$ and their variation pattern was similar to those of chlorophyll a with the range of $0.90{\sim}7.25{\mu}g/l(average 3.35{\mu}g/l)$. The low C/N ratios also suggested that marine microalgae was a major component of POC for Wonmun Bay. Primary production, average $1.97\;gC/m^2/day$, was the main source of POC beacuse the supply of POC via freshwater input and exchange with the outer part of the bay was little. Oyster population also excreted a small amount of POC. About $40\%$ of produced POC was decomposed heterotrophically. Another important cause for the fluctuation of observed POC was tidal cycle. Considerable POC, which amounted $37\%$ of produced POC, was lost from the bay due to flushing by tidal cycle. It was also calculated that about $16\%$ was transported onto the sediment. It seemed that a part of POC was consumed by oyster and other heterotrophs.

  • PDF

A New Approach on Adsorption and Transport of Cesium in Organic Matter-rich Soil and Groundwater Environments Changed by Wildfires (산불로 인해 변화하는 토양지하수 환경에서의 세슘 흡착 및 거동에 대한 새로운 고찰)

  • Bae, Hyojin;Choung, Sungwook;Jeong, Jina
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.1
    • /
    • pp.10-18
    • /
    • 2022
  • This study was conducted to investigate the effect of soil and groundwater environment changed by wildfire on cesium adsorption and transport. Soil samples (A, B) used in the study were collected from Gangwon-do, where wildfires frequently occur, and the adsorption and transport of cesium in the samples were evaluated through batch and column experiments. As a result of the batch adsorption experiments with various concentrations of cesium (CW ≈ 10~105 ㎍/L), the adsorption distribution coefficient (Kd) of cesium was higher in sample A for all observed concentrations. It means that the adsorption capacity of sample A was higher to that of sample B, which was also confirmed through the parameters of adsorption isotherm models (Freundlich and Langmuir model) applied to the experimental results. The fixed bed column experiments simulated the actual soil and groundwater environment, and they showed that cesium was retarded approximately 43 and 27 times than a nonreactive tracer in sample A and B, respectively. In particular, a significant retardation occurred in the sample A. Although sample A contains little clays, total organic carbon (TOC) contents were 3 times greater than sample B. These results imply that particulate organic matter caused by wildfire might influence the adsorption and transport of cesium in the organic matter-rich soil and groundwater environment.