• Title/Summary/Keyword: Particulate organic C

Search Result 112, Processing Time 0.03 seconds

Food-Web Structures in the Lower Trophic Levels of the Korean Seas (East Sea, West Sea, South Sea, and East China Sea) during the Summer Season: Using Carbon and Nitrogen Stable Isotopes (하계 한반도 해역(동해, 서해, 남해 및 동중국해)의 하위영양단계 먹이망 구조 : 탄소 및 질소 안정동위원소 활용)

  • Min, Jun-Oh;Lee, Chang-Hwa;Youn, Seok-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.5
    • /
    • pp.493-505
    • /
    • 2020
  • Food web structures in the lower trophic levels of the seas around the Korean peninsula were investigated in August 2019 using stable isotopes. There were variable ratios of the carbon (-26.18 ~ -20.61 ‰) and nitrogen stable (5.36 ~ 15.20 ‰) isotopes in the particulate organic matter (POM). Most of the organisms ingested micro-POM as a major food source, but this varied spatially. The chaetognaths (3.40 ± 0.61) occupied the highest trophic level. The isotope mixing model showed that the proportions (13 ~ 51 %) of some organisms (i.e., copepods and euphausiids) reflected the relative contributions as major food sources for chaetognaths at each site.

${\delta}^{13}C$ Evidence for the Importance of Local Benthic Producers to Fish Nutrition in the Inner Bay Systems in the Southern Coast of Korea (${\delta}^{13}C$ 분석에 의한 남해 연안 내만역 어류 영양원으로써 저서생산의 중요성 평가)

  • Kang, Chang-Keun;Choy, Eun-Jung;Kim, Young-Sang;Park, Hyun-Je
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.1
    • /
    • pp.56-62
    • /
    • 2009
  • Stable carbon isotope analysis was used to investigate the autotrophic carbon sources supporting fisheries in three coastal bay systems of the southern coast of Korea. Carbon isotope ratios (${\delta}^{13}C$) of 31 fish species were analysed and compared with those of a range of potential primary food sources [e.g., seagrass (Zostera marina), seagrass epiphytes, benthic microalgae, macroalgae, marine particulate organic matter (marine POM), marsh plant (Phragmites australis) and terrestrial POM]. ${\delta}^{13}C$ values (range, -16.2${\sim}$-8.3‰) of fishes from the coastal embayment systems were overlapped with those of seagrass (-8.3${\pm}$1.9‰), seagrass epiphytes (-12.4${\pm}$0.6‰), benthic microalgae (-15.4${\pm}$1.6‰) and macroalgae (-16.0${\pm}$1.8‰). In addition, fishes (-12.9${\pm}$1.5‰) from the study area had distinctly higher ${\delta}^{13}C$ values compared to those collected in offshore sites (-17.3${\pm}$0.8‰) of the southern sea of Korea and Nakdong River (-23.2${\pm}$1.6‰). This result indicates that carbon supporting fish communities of these coastal bay systems is mainly derived from the local benthic producers.

Spatio-Temporal Variation Characteristics of Primary Productivity and Environmental Factors of Shellfish Mariculture in Jaran Bay, Korea (자란만 패류양식어장의 기초생산력 및 환경인자 변동 특성)

  • Lee, Dae In;Choi, Yong-Hyeon;Hong, SokJin;Kim, Hyung Chul;Lee, Won-Chan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.5
    • /
    • pp.721-734
    • /
    • 2022
  • This study analyzed the spatio-temporal variation characteristics of major environmental factors such as primary productivity (PP), chlorophyll a, nutrients, sinking particle matters, and organic contamination and biochemical composition of surface sediment on a monthly basis for approximately 2 years around shellfish mariculture in Jaran Bay, Korea. In addition, PP in Jaran Bay was compared with that in other coastal areas and related policy plans were proposed. The average PP of the study area was high in summer and autumn with 6.43~115.43 mgC m-2 hr-1 range. This was lower than that in Gamak Bay and Masan Bay, whereas higher than that in Garorim Bay and the West Sea. The PP in coastal waters, where many aquaculture farms were distributed, significantly fluctuated. The different size compositions of phytoplanktons constituting chlorophyll a slightly varied by month, and little restriction existed on the productivity of phytoplanktons owing to the depletion of nutrients. Typically, the Redfield ratio was less than 16, indicating that nitrogen was the limiting factor for the growth of phytoplanktons. The biochemical composition of particulate organic matters in the water column showed the highest carbohydrates, but lipids and protein contents were high in surface sediments. The concentration of TOC and AVS of the surface sediments was high at inside of bay, and sometimes, exceeded the environmental criteria of fishing grounds. The organic C:N ratio of sediments ranged from 8.1 to 10.4 on average. PP had the highest correlation with chlorophyll a, nitrogen and protein of particle organic materials. Recently, chlorophyll a, DIN, and DIP of water column trends tended to decrease, however, the contamination of sediments increased. Considering the annual PP of 125.9 gC m-2 yr-1 and mariculture area (oyster) of 4.97 km2, the annual carbon production from phytoplanktons was estimated to be about 625 tons, and the annual total wet weight of shellfish (oyster) was estimated to be about 6,250 tons.

Classification by Zooplankton Inhabit Character and Freshwater Microbial Food Web: Importance of Epiphytic Zooplankton as Energy Source for High-Level Predator (동물플랑크톤의 서식 특성에 따른 분류와 먹이망: 상위포식자의 에너지원으로서 부착성 동물플랑크톤의 중요성)

  • Choi, Jong-Yun;La, Geung-Hwan;Jeong, Kwang-Seuk;Kim, Seong-Ki;Chang, Kwang-Hyeon;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.444-452
    • /
    • 2012
  • We conducted a comprehensive monitoring for freshwater food web in a wetland system (Jangcheok Lake), from May to October, 2011. Monthly sampling for zooplankton, fish as well as organic matters, was implemented. In order to understand the food web structure and energy flow, we applied stable isotope analysis to the collected samples, based on ${\delta}^{13}C$ and ${\delta}^{15}N$ values of epiphytic particulate organic matter(EPOM) and particulate organic matter (POM), epiphytic and planktonic zooplankton, fish (Lepomis macrochirus). In the study site, epiphytic and planktonic zooplankton was 24 and 30 species, respectively, and coincidence species between epiphytic and planktonic zooplankton were 20 species. Epiphytic zooplankton were more abundant during the spring and early summer (May to July); however, planktonic zooplankton were more abundant during the autumn (September to October) season. Stable isotope analysis revealed that fish and epiphytic zooplankton had seasonal variations on their food sources. EPOM largely contributed epiphytic zooplankton in spring (May), but increasing contribution of POM in autumn (September) was detected. However, planktonic zooplankton depended on only POM in both seasons. Fish utilized both epiphytic and planktonic zooplankton, but small sized (1~3 cm), fish preferred epiphytic zooplankton, where as larger sized (4~7 cm) fish tended to consume planktonic zooplankton, and epiphytic zooplankton had important role in energy transfer. This pattern was clear when results of spring and autumn stable isotope analysis were compared. From the results of this study, we confirmed that wetlands ecosystem supported various epiphytic and planktonic zooplankton species, they depend on other food items, respectively. L. macrochirus also showed a difference of food source according to the body size, they depend on seasonal density change of zooplankton. In particular, epiphytic zooplankton was very important for growth and development of young fish in the spring.

Estimate of Particulate Organic Carbon Export Flux Using $^{234}Th/^{238}U$ Disequilibrium in the Southwestern East Sea During Summer (동해 서남해역에서 여름철 $^{234}Th/^{238}U$ 비평형을 이용한 입자상 유기탄소 침강플럭스 추정)

  • Kim, Dong-Seon;Choi, Man-Sik;Oh, Hae-Young;Kim, Kyung Hee;Noh, Jae-Hoon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • Export fluxes of particulate organic carbon were estimated for the first time by using $^{234}Th/^{238}U$ disequilibrium in the southwestern East Sea during August 2007. They were calculated by multiplying POC/$^{234}Th_p$ ratios of sinking particles (larger than 0.7 ${\mu}m$) obtained from 150-200 m water depths to $^{234}Th$ fluxes that were estimated by integrating $^{234}Th/^{238}U$ disequilibrium from surface to 100 m water depth. Export fluxes ranged from 14 to 505 mg C $m^{-2}$ $day^{-1}$, with the highest value at station A2 and the lowest value at station D4. Primary production was well correlated with export flux, indicating that it was a major factor controlling export flux. Export flux in the East Sea was generally higher than those estimated in the open ocean and similar to or somewhat higher than those in the continental marginal seas. Export flux/primary production (EF/PP) ratios varied from 0.29 to 0.62, with an average of 0.43 and were somewhat higher in the basin area than in the coastal area. EF/PP ratio in the East Sea was rather similar to those estimated in the North Sea and Chukchi Sea, but much higher than those in the Labrador Sea, Barents Sea, and Gulf of Lions. Therefore, the East Sea is one of the major areas where a large amount of organic carbon produced in the euphotic zone sinks into the deep layer below 200 m water depth.

Seasonal Variation of PM2.5 Components Observed in an Industrial Area of Chiba Prefecture, Japan

  • Ichikawa, Yujiro;Naito, Suekazu;Ishii, Katsumi;Oohashi, Hideaki
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.1
    • /
    • pp.66-77
    • /
    • 2015
  • In order to survey the seasonal variation of the chemical composition of particulate matter of $2.5{\mu}m$ or less ($PM_{2.5}$), $PM_{2.5}$ was sampled from 8 February 2013 to 31 March 2014 in an industrial area of Chiba Prefecture, Japan. Chemical measurements of the sample included: ionic components ($Na^+$, $NH_4{^+}$, $Ca^{2+}$, $Mg^{2+}$, $K^+$, $Cl^-$, $NO_3{^-}$ and $SO_4{^{2-}}$), carbonaceous components - organic carbon (OC) and elemental carbon (EC), and water-soluble organic carbon (WSOC). Also, secondary organic carbon (SOC) was measured based using the EC tracer method, and char-EC and soot-EC were calculated from the analytical results. The data obtained were interpreted in terms of temporal variation. Of the overall mean value of $PM_{2.5}$ mass concentration obtained during the study period, ionic components, OC and EC accounted for 45.3%, 19.7%, and 8.0%, respectively. $NO_3{^-}$ showed a unique seasonal distribution pattern due to a dependence on temperature and absolute humidity. It was estimated that an approximate temperature of $14^{\circ}C$, and absolute humidity of $7g/m^3$ were critical for the reversible reaction of $NH_4NO_3(p){\leftrightharpoons}NH_3(g)+HNO_3(g)$. The amount of OC and EC contributing to the monthly $PM_{2.5}$ mass concentration was higher in autumn and winter compared to spring and summer. This result could be attributed to the impact of burning biomass, since WSOC and the ratio of char-EC/soot-EC showed a similar pattern during the corresponding period. From the comparison of monthly WSOC/OC values, a maximum ratio of 83% was obtained in August (summer). The WSOC and estimated SOC levels derived from the EC tracer method correlated (R=0.77) in summer. The high occurrence of WSOC during summer was mainly due to the formation of SOC by photochemical reactions. Through long-term observation of $PM_{2.5}$ chemical components, we established that the degree to which the above-mentioned factors influence $PM_{2.5}$ composition, fluctuates with seasonal changes.

Removal of Chlorinated Organic Compounds in Flue Gas by Activated Carbon Injection in a Semi-Drying Reactor (반건식 반응기에서의 활성탄 혼합주입에 의한 소각로 배가스중의 유기 염소계 화합물의 제거 공정 연구)

  • Choo, Changupp;Whang, Jaedong;Lee, Joyoung;Cho, Chulhoon;Shin, Byungchul
    • Clean Technology
    • /
    • v.6 no.2
    • /
    • pp.121-127
    • /
    • 2000
  • There are several kinds of hazardous materials in incinerator flue gas, such as particulate matter, acid gas, heavy metal, dioxin, etc. The activated carbon adsorption is considered as one of the methods removing dioxin from flue gas. Without any additional equipment and facilities, the activated carbon was mixed with lime and sprayed in the semi-drying reactor of an incinerator and filtered in the bag filter, and its efficiency of removing hazardous organic material was investigated. 1,2-dichlorobenzene (o-DCB) was used as a precursor material of dioxin and the effects of the activated carbon amount, the operating temperature of the reactor, and the atomizer r.p.m were measured and analyzed. Experimental results showed that the optimum outlet temperature of the reactor was $145^{\circ}C$ considering the performance of the bag filter, and the adsorption performance improved with the increase of the atomizer r.p.m. Also the performance of removing o-DCB in the bag filter is higher than of the semi-drying reactor.

  • PDF

Characteristics of environmental condition and planktonic organisms in ship's ballast water originating from international ports of Japan (우리나라 주요 국제항에 입항하는 일본 기원 선박의 평형수내 환경 및 부유생물 특성)

  • Jang, Pung-Guk;Baek, Seung Ho;Jang, Min-Chl;Hyun, Bong-Gil;Shin, Kyoungsoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.245-252
    • /
    • 2016
  • This study investigated the environmental conditions and planktonic organisms in the ballast waters (BW) of 22 vessels originating from the international ports of Japan for the purpose of negotiating exemptions from the Ballast Water Management Convention (BWM Convention). The shortest duration of the BW was $3.33{\pm}1.87days$ in area "A", which included Kyushu and Suo Nada at Seto Inland. The total suspended solids, dissolved organic carbon, and particulate organic carbon ranged from 4.60 to 60.9 mg L-1, from 0.97 to 2.69 mg L-1, and from 0.24 to 4.51 mg L-1, respectively. A low average concentration of nutrients was measured in the BW from area "A", but that in the BW from area "C" (around central Honshu) was high, which may be related to the ballasting periods. High chlorophyll-a concentrations (>$1{\mu}g\;L-1$) were measured in four vessels, three of which carried the BW in area "A". High abundances of phytoplankton (> 50,000 cells L-1) were measured in four vessels, three of which carried the BW in area "A". The two vessels originating from Tokyuyama Bay in area "A" showed high densities of dinoflagellates, which are known to be harmful algae. Our results suggest that the negotiations for an exemption from the BWM Convention for Japan should proceed with caution.

UV Photodegradation of Chlorinated VOCs: Removal Efficiency and Products (염소계 VOCs의 UV 광분해 연구: 제거율 및 부산물)

  • Kang, InSun;Xi, Jinying;Wang, Can;Hu, Hong-Ying
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.2
    • /
    • pp.87-96
    • /
    • 2017
  • In this study, 4 gases containing typical chlorinated volatile organic compounds (VOCs) were treated by ultraviolet (UV) irradiation. The typical chlorinated VOCs are dichloromethane (DCM), trichloromethane (TCM), carbon tetrachloride (CTC) and trichloroethylene (TCE). The removal efficiency (RE) and the products of chlorinated VOCs by UV irradiation are investigated. At this time, 2 types of background gas (air and nitrogen) were used to figure out the RE by photooxidation and photolysis. The specification of UV-lamp used in this study was low-pressure mercury lamp emitting wavelength of 185~254 nm. The experimental conditions were set as initial VOC concentration of $180{\pm}10ppm$, empty bed retention time (EBRT) of 53 s, temperature of $23{\pm}2^{\circ}C$ and relative humidity of $65{\pm}5%$. In the photolysis condition with nitrogen ($N_2$) as background gas, the averaged RE of the 4 types of chlorinated VOCs was about 24% higher than that with photooxidation; and the REs of VOCs except CTC were confirmed as >99%. The composition of off-gases after UV photooxidation in air was investigated and several intermediates from DCM, TCM and TCE were detected by GC/MS. Among them, phosgene which is a toxics was detected as an intermediate of TCM. In addition, the concentration of carbon dioxide ($CO_2$) in the off-gases was measured to calculate the mineralization rate (MR). With the photooxidation, TCE showed the highest RE (>99%) while MR was the lowest (17%); and the MR of DCM was the highest (86%). In addition, particulate matters (PM) in the off-gases was also detected and high concentrated $PM_{10}$ ($21,580{\mu}g{\cdot}m^{-3}$) and $PM_{2.5}$ ($6,346{\mu}g{\cdot}m^{-3}$) were detected in TCE off-gas. More than 99% of the chlorinated VOCs could be removed using UV254-185 nm lamp, while it is necessary to conduct further studies on the production and treatment of secondary pollutants.

Applications of Radiocarbon Isotope Ratios in Environmental Sciences in South Korea (방사성탄소동위원소비 분석을 적용한 우리나라 환경과학 연구)

  • Neung-Hwan Oh;Ji-Yeon Cha
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.4
    • /
    • pp.281-302
    • /
    • 2023
  • Carbon is not only an essential element for life but also a key player in climate change. The radiocarbon (14C) analysis using accelerator mass spectrometry (AMS) is a powerful tool not only to understand the carbon cycle but also to track pollutants derived from fossil carbon, which have a distinct radiocarbon isotope ratio (Δ14C). Many studies have reported Δ14C of carbon compounds in streams, rivers, rain, snow, throughfall, fine particulate matter (PM2.5), and wastewater treatment plant effluents in South Korea, which are reviewed in this manuscript. In summary, (1) stream and river carbon in South Korea are largely derived from the chemical weathering of soils and rocks, and organic compounds in plants and soils, strongly influenced by precipitation, wastewater treatment effluents, agricultural land use, soil water, and groundwater. (2) Unprecedentedly high Δ14C of precipitation during winter has been reported, which can directly and indirectly influence stream and river carbon. Although we cannot exclude the possibility of local contamination sources of high Δ14C, the results suggest that stream dissolved organic carbon could be older than previously thought, warranting future studies. (3) The 14C analysis has also been applied to quantify the sources of forest throughfall and PM2.5, providing new insights. The 14C data on a variety of ecosystems will be valuable not only to track the pollutants derived from fossil carbon but also to improve our understanding of climate change and provide solutions.