• Title/Summary/Keyword: Particulate composites

Search Result 117, Processing Time 0.029 seconds

Induction Heating of Vertical Type for Semi-Solid Forging with Metal Matrix Composites (반용융 단조를 위한 복합재료의 수직형 고주파 유도가열)

  • 이동건;허재찬;강충길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.385-388
    • /
    • 2001
  • In part forming process of metal matrix composites, the die casting and squeeze casting process are limited the size and dimension in term of final parts without machining. The thixoforming process for metal matrix composites has numerous advantages compared to die casting squeeze casting and compocasting. However, for the thixoforming process, the billet with the desired volume fraction must be heated to obtain a uniform temperature distribution over the entire cross-sectional areas. To obtain the reheating conditions of composites, the particulate reinforced metal matrix composites for thixoforming were fabricated by combined stirring process which is simultaneously performed with electro-magnetic stirring and mechanical stirring process.

  • PDF

Multi-Step Reheating Process of Metal Matrix Composites for Thixoforming (Thixoforming을 위한 금속 복합재료의 다단 재가열 공정)

  • 허재찬;강충길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.180-183
    • /
    • 1997
  • The forming process of metal matrix composites by the die casting and squeeze casting process are limited in size and dimension in term of final parts without machining. The thixoforming process for metal matrix composites has numerous advantages compared to die casting, squeeze casting and compocasting. The characteristics of thixoforming process can decrease the liquid segregation because of he improvement in fluidity in a globular microstructure state and utilizes flow without air entrapment. Therefore, in order to obtain the sound parts of metal matrix composites by using thixoforming process which as co-existing solidus-liquidus pahse, it si very important to obtain reheating condition. However, for he thixoforming process, the billet with the desired volume fraction must be heated to obtain a uniform temperature distribution over the entire cross-sectional areas. To obtain the reheating conditions of composites, the particulate reinforced metal matrix composites for thixoforming were fabricated by combined stirring process which is simultaneously performed with electro-magnetic stirring process which is simultaneously performed with electro-magnetic stirring and mechanical stirring process.

  • PDF

Wear Behavior of Al-based Composites according to Reinforcements Volume Fraction (강화상의 분율에 따른 알루미늄기 복합재료의 마모거동)

  • Lee, K.J.;Kim, K.T.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.15 no.5
    • /
    • pp.77-82
    • /
    • 2011
  • SiC particulate reinforced Al matrix composites with different SiC volume fractions were fabricated by thermal spray process. And the dry sliding wear test were performed on these composites using the applied load of 10 N, rotational speed of 30 rpm, radius of rotation 15 mm. Wear tracks on the Al/SiC composites were investigated using scanning electron microscope(SEM) and energy dispersive spectroscopy (EDS). It was observed that wear behavior of Al/SiC composites and formation of MML was changed dramatically according to reinforcement volume fraction.

Effect of Contact Load on Wear Property of (TiB+TiC) Particulates Reinforced Titanium Matrix Composites ((TiB+TiC) 입자강화 Ti기 복합재료의 접촉하중에 따른 내마모 특성)

  • Choi, Bong-Jae
    • Journal of Korea Foundry Society
    • /
    • v.37 no.4
    • /
    • pp.115-122
    • /
    • 2017
  • The aim of this research is to evaluate the wear properties of (TiB+TiC) paticulate reinforced titanium matrix composites (TMCs) by in-situ synthesis. Different particle sizes (1500, $150{\mu}m$) and contents (0.94, 1.88 and 3.76 mass% for Ti, 1.98 and 3.96 mass% for the Ti6Al4V alloy) of boron carbide were added to pure titanium and to a Ti6Al4V alloy matrix during vacuum induction melting to provide 5, 10 and 20 vol.% (TiB+TiC) particulate reinforcement amounts. The wear behavior of the (TiB+TiC) particulate reinforced TMCs is described in detail with regard to the coefficient of friction, the hardness, and the degree of reinforcement fragmentation during sliding wear. The worn surfaces of each sliding wear condition are shown for the three types of wear studied here: transfer layer wear, particle cohesion wear and the development of abrasive areas. The fine reinforcements of TMCs were easily fragmented from the Ti matrix as compared to coarse reinforcements, and fragmented debris accelerated the decrease in the wear resistance.

Reheating Process of Metal Matrix Composite for Thixoforming (Thixoforming을 위한 금속복합재료의 재가열 공정)

  • 안성수;강충길;조형호
    • Composites Research
    • /
    • v.13 no.4
    • /
    • pp.19-32
    • /
    • 2000
  • The fabrication process of particulate metal matrix composites(PMMCs) with homogeneous distribution of reinforcement and reheating for thixoforming has been studied. Both of eletro-magnetic stirring and mechanical stirring were used to fabricate particulate metal matrix composites(PMMCs) for variation of particle size. The electrical and mechanical processing conditions for fabricating PMMCs are also suggested. For thixoforming of PMMCs, fabricated bi1lets are reheated by using the designed optimal coil with as function of length between PMMC billet and coil surface, and coil diameter and billet. The effect of reinforcement distribution according to variation of billet temperature were investigated with solid fraction theory with a function of matrix alloy and volume fraction of reinforcement.

  • PDF

Tribological characteristics of short fiber reinforced composites (단섬유 보강 복합재료의 트라이볼로지 특성)

  • 윤재륜
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1238-1245
    • /
    • 1988
  • Friction and wear characteristics of short fiber reinforced and particulate filled composites were investigated experimentally. Two kinds of fiber composites, chopped graphite fiber reinforced PAI(polyamide-imide) and glass fiber reinforced PAI, and a particulate composite, TiO$_{2}$ powder filled PAI, were selected for the friction and wear test since these are important engineering materials based on a new high temperature engineering plastic. All the specimens were cut into proper size for cylinder-on-plate type wear test. Frictional forces were measured by employing a load transducer and wear rates were calculated by measuring weight loss during wear test. The experimental results are reported in this paper and carefully discussed to explain the friction and wear behavior qualitatively. The frictional behavior is interpreted by considering four basic friction components which are believed to the genesis of friction and the wear behavior is explained by applying delamination theory of wear.

Application of the full factorial design to modelling of Al2O3/SiC particle reinforced al-matrix composites

  • Altinkok, Necat
    • Steel and Composite Structures
    • /
    • v.21 no.6
    • /
    • pp.1327-1345
    • /
    • 2016
  • $Al_2O_3$/SiC particulate reinforced (Metal Matrix Composites) MMCs which were produced by using stir casting process, bending strength and hardening behaviour were obtained using an analysis of variance (ANOVA) technique that uses full factorial design. Factor variables and their ranges were: particle size $2-60{\mu}m$; the stirring speed 450 rpm, 500 rpm and the stirring temperature $620^{\circ}C$, $650^{\circ}C$. An empirical equation was derived from test results to describe the relationship between the test parameters. This model for the tensile strength of the hybrid composite materials with $R^2$ adj = 80% for the bending strength $R^2$ adj = 89% were generated from the data. The regression coefficients of this model quantify the tensile strength and bending strengths of the effects of each of the factors. The interactions of all three factors do not present significant percentage contributions on the tensile strength and bending strengths of hybrid composite materials. Analysis of the residuals versus was predicted the tensile strength and bending strengths show a normalized distribution and thereby confirms the suitability of this model. Particle size was found to have the strongest influence on the tensile strength and bending strength.

Nondestructive Determination of Reinforcement Volume Fractions in Particulate Composites : Eddy Current Method (비파괴적 방법에 의한 입자 강화 복합재료의 부피분율 평가: 와전류법)

  • Jeong, Hyun-Jo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.2
    • /
    • pp.112-120
    • /
    • 1998
  • A nondestructive evaluation technique was developed for the quantitative determination of the reinforcement volume fractions in particulate reinforced metal matrix composites. The proposed technique employed a composite micromechanics which accounts for the microstructure of the composite medium together with the measurement of anisotropic electrical conductivity. When the measured conductivity was coupled with the theoretically predicted conductivity, the unknown reinforcement volume fraction was calculated. An analytical model based on the Mori-Tanaka method was described which relates the NDE signatures to the composite microstructure. The volume fractions were calculated using eddy current measurements made on a wide range of silicon carbide particulate ($SiC_p$) reinforced aluminum (Al) matrix composites. The calculated $SiC_p$ volume fractions were in good agreement with the measured volume fractions in the range of 0-30%. The technique was also found to be effective in estimating the total volume percentage of reinforcement and intermetallic compound formed during the processing stage.

  • PDF

Tensile Mean Strain Effects on the Fatigue Life of SiC-Particulate-Reinforced Al-Si Cast Alloy Composites (SiC입자강화 주조Al-Si복합재의 피로수명에 대한 인장평균변형률의 영향)

  • Go, Seung-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.1970-1981
    • /
    • 1999
  • The low-cycle fatigue behaviour of a SiC-particulate-reinforced Al-Si cast alloy with two different volume fractions has been investigated from a series of strain-control led fatigue tests with zero and nonzero tensile mean strains. The composites including the unreinforced matrix alloy, exhibited cyclic hardening behaviour, with more pronounced strain-hardening for the composites with a higher volume fraction of the SiC particles. For the tensile mean strain tests, the initial high tensile mean stress relaxed to zero for the ductile Al-Si alloy, resulting in no influence of the tensile mean strain on the fatigue life of the matrix alloy. However, tensile mean strain for the composite caused tensile mean stresses and reduced fatigue life. The pronounced effects of mean strain on the low-cycle fatigue life of the composite compared to the unreinforced matrix alloy were attributed to the initial large prestrain and non-relaxing high tensile mean stress in the composite with very limited ductility and Cyclic plasticity. Fatigue damage parameter using strain energy, density efficiently accounted for the mean stress effects. Predicted fatigue life using the damage parameter correlated fairly well with the experimental life within a factor of 3. Also, the fatigue damage parameter indicated the inferior life in the low-cycle regime and superior life in the high-cycle regime for the composite, compared to the unreinforced matrix alloy.

Fabrication of Ceramic Particulate Reinforced Steel Composites by Liquid Pressing Infiltration Process (용융가압함침공정을 이용한 세라믹 입자 강화 철강복합재료의 제조성 검증)

  • Cho, Seungchan;Lee, Yeong-Hwan;Ko, Seongmin;Park, Hyeon Jae;Lee, Donghyun;Shin, Sangmin;Jo, Ilguk;Lee, Sang-Kwan;Lee, Sang-Bok
    • Composites Research
    • /
    • v.31 no.4
    • /
    • pp.117-121
    • /
    • 2018
  • Various ceramic particulate such as TiC, $TiB_2$, $Al_2O_3$ reinforced SUS431 matrix composites were successfully fabricated by a novel liquid pressing infiltration process. Microstructures of the SUS431 composite were analyzed to determine manufacturability of composites. $Al_2O_3$-SUS431 composite had lots of defects due to poor wettability between the $Al_2O_3$ and steel matrix. On the other hand, TiC was uniformly dispersed in the SUS431 matrix than $TiB_2$ and $Al_2O_3$ due to good wettability and interfacial properties.