• Title/Summary/Keyword: Particle-reinforced composites

Search Result 154, Processing Time 0.027 seconds

Compositing Modes and Microstructures of $Cu-X(=Al_2O_3,W)_p$ Composite by Centrifugal Spray-Cast Deposition (원심분사주조법에 의한 $Cu-X(=Al_2O_3,W)_p$ 복합재료의 미세조직 및 복합화)

  • Bae, Cha-Hurn;Jeong, Hae-Yong
    • Journal of Korea Foundry Society
    • /
    • v.17 no.5
    • /
    • pp.480-487
    • /
    • 1997
  • Particle reinforced metal matrix composites(MMCs) via a centrifugal spray-cast deposition(CSD) process were fabricated by injecting second phase particles($Al_2O_3$<40${\mu}m$, W<17.3${\mu}m$) into copper melt on the atomizing disc. Compositing modes were investigated by combining microstructures and mathematical modeling between Cu droplets and the reinforced particles injected. The $Cu/W_P$ powders were shown that the W particles penetrate and get embedded in the Cu droplets. It is considered that the W particles composite preferentially in Cu melt on the atomizing disc. On the other hand, the $Al_2O_3$, particles did not penetrate into the Cu droplets on the atomizing disc but get attached in surface of Cu droplets during the flight. It is considered that the compositing may be attained in the flight distance which the relative velocity between Cu droplet and $Al_2O_3$, particle is maximum. The microstructure of the $Cu/W_P$ and the $Cu/(Al_2O_3)_p$ composite preform was strongly influenced by compositing modes of droplets, and after subsequent deposition it was comprised as it is called the dispersed type and the cell type of microstructure, respectively.

  • PDF

Reheating Process of Particulates Reinforced Metal Matrix Composites for Thixoforming (Thixoforming을 위한 입자강화형 금속복합재료의 Reheating 공정)

  • 이동건;안성수;강충길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.218-223
    • /
    • 2000
  • A both mixing process of electro-magnetic stirring and mechanical process technique were used to fabricate particulate metal matrix composites(PMMCs) for variation of particle size. The PMMCs were tested for their tensile test for with and without heat treatment with T6. PMMCs fabrication processing conditions for both electrical and mechanical process are also suggested. In order to thixoforming of PMMCs, fabricated billet are reheated by using the optimal coil designed as a function of length between PMMC billet and coil surface, coil diameter and billet length. The effect of reinforcement distribution on billet temperature variation are investigated with calculated solid fraction theory proposed as a function of matrix alloy and volume fraction of reinforcement.

  • PDF

Effects of SiC Cluster on Mechanical Properties of the 2024A1/$SiC_p$ Composites (2024A1/$SiC_p$복합재료의 기계적특성에 미치는 SiC클러스터의 영향)

  • 김홍물;천병선
    • Journal of Powder Materials
    • /
    • v.8 no.2
    • /
    • pp.124-130
    • /
    • 2001
  • A centrifugally atomized 2024A1/SiC/sub p/ composites were extruded to study effect of clusters on mechanical properties, and a model was proposed that the strength of MMCs would be estimated from the load transfer model approach that taken into consideration of the clusters. This model has been successfully utilized to predict the strength and fracture toughness of MMCs. The experimental and calculated results show coincidence and that the fracture toughness decreases with increasing the volume fraction of particles. On the basis of experimental observations, we suggest that the strength and fracture toughness of particle reinforced MMCs may be calculated from; σ/sub y/=σ/sub m/V/sub m/+σ/sub r/(V/sub r/-V/sub c)-σ/sub r/V/sub c/, K/sub IQ/=σ/sub Y/((3πt)((r/sub r//V/sub r/)(r/sub c//V/sub c/))/sup 1/2/)/sup 1/2/, respectively.

  • PDF

Fabrication of Particulates Reinforced Metal Matrix Composites by Electro-Magnetic Stirring and Reheating Process for Thixoforming (전자기식 교반법을 이용한 입자강화형 금속복합재료의 제조 및 Thixoforming을 위한 재가열 공정)

  • 임해정;강충길;조형호
    • Transactions of Materials Processing
    • /
    • v.9 no.5
    • /
    • pp.494-503
    • /
    • 2000
  • The electro-magnetic stirring and mechanical process were applied to fabricate particulate metal matrix composites(PMMCs) with various particle size. The mechanical test on PMMCs was carried out in order to clarify the effect of 76 heat treatment on tensile behaviors. In order to study the thixoforming of PMMCs, fabricated billet are reheated by using the coil designed as a function of length between PMMC billet and coil surface, coil diameter and billet length. The effect of reinforcement distribution on billet temperature variation has been investigated with the calculated solid fraction theory based on a function of matrix alloy and volume fraction of reinforcement.

  • PDF

A micromechanics-based time-domain viscoelastic constitutive model for particulate composites: Theory and experimental validation

  • You, Hangil;Lim, Hyoung Jun;Yun, Gun Jin
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.3
    • /
    • pp.217-242
    • /
    • 2022
  • This paper proposes a novel time-domain homogenization model combining the viscoelastic constitutive law with Eshelby's inclusion theory-based micromechanics model to predict the mechanical behavior of the particle reinforced composite material. The proposed model is intuitive and straightforward capable of predicting composites' viscoelastic behavior in the time domain. The isotropization technique for non-uniform stress-strain fields and incremental Mori-Tanaka schemes for high volume fraction are adopted in this study. Effects of the imperfectly bonded interphase layer on the viscoelastic behavior on the dynamic mechanical behavior are also investigated. The proposed model is verified by the direct numerical simulation and DMA (dynamic mechanical analysis) experimental results. The proposed model is useful for multiscale analysis of viscoelastic composite materials, and it can also be extended to predict the nonlinear viscoelastic response of composite materials.

Modeling the compressive strength of cement mortar nano-composites

  • Alavi, Reza;Mirzadeh, Hamed
    • Computers and Concrete
    • /
    • v.10 no.1
    • /
    • pp.49-57
    • /
    • 2012
  • Nano-particle-reinforced cement mortars have been the basis of research in recent years and a significant growth is expected in the future. Therefore, optimization and quantification of the effect of processing parameters and mixture ingredients on the performance of cement mortars are quite important. In this work, the effects of nano-silica, water/binder ratio, sand/binder ratio and aging (curing) time on the compressive strength of cement mortars were modeled by means of artificial neural network (ANN). The developed model can be conveniently used as a rough estimate at the stage of mix design in order to produce high quality and economical cement mortars.

Analysis of Elastic Constants in SiC Particulate Reinforced Al Matrix Composites by Resonant Ultrasound Spectroscopy (초음파 공명 분광법(RUS)을 이용한 SiC 입자강화 Al 기지복합재료의 탄성계수 해석)

  • Jung, Hyun-Kyu;Cheong, Yong-Moo;Joo, Young-Sang;Hong, Soon-Hyung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.3
    • /
    • pp.180-188
    • /
    • 1999
  • The dynamic elastic properties of metal matrix composites were investigated by resonant ultrasound spectroscopy(RUS). The composites used in this study consisted of 2124 aluminum alloy reinforced with different concentrations of SiC particles. RUS can determine the nine independent elastic stiffness($C_{ij}$) for the orthorhombic symmetry on a small specimen simultaneously. The elastic constants were determined as a function of the volume fraction. A concept of effective aspect ratio. which combine the aspect ratio and the orientation of reinforcement. was used to calculate the initial moduli from Mori-Tanaka theory for the input of RUS minimization code. Young's moduli can be obtained from the measured stiffnesses. The results show that the elastic stiffness increases with increment of the particle content. The behavior of elastic stiffness indicates that the particle redistribution induced by the extrusion process enlarges the transversely isotropic symmetry as the fraction of reinforced particles increase. This relationship could be used for determination of the volume fractions of reinforcement as a potential tool of nondestructive material characterization.

  • PDF

Mechanical Properties and Wear Performance of the Al7075 Composites Reinforced with Bimodal Sized SiC Particles (이종입자 강화 SiC/Al7075 금속복합재료의 압축특성 및 마모특성 연구)

  • Lee, Donghyun;Cho, Seungchan;Kim, Yangdo;Lee, Sang-Kwan;Lee, Sang-Bok;Jo, Ilguk
    • Composites Research
    • /
    • v.30 no.5
    • /
    • pp.310-315
    • /
    • 2017
  • In this study, we have investigated microstructure, mechanical properties and wear characteristic of aluminum metal matrix composites with a high volume fraction and uniformly dispersed SiC particles which produced by a liquid pressing process. The volume fraction of bimodal SiC/Al7075 composite was 12% higher than that of the monomodal SiC/Al7075 composite and a compressive strength is increased about 200 MPa. As a result of the abrasion test, the wear width and depth of the bimodal SiC/Al7075 composite were $285.1{\mu}m$ and $0.45{\mu}m$, respectively. The coefficient of friction of bimodal SiC/Al7075 was 0.16.

Homogenization of Plastic Behavior of Metallic Particle/Epoxy Composite Adhesive for Cold Spray Deposition (저온 분사 공정을 위한 금속입자/에폭시 복합재료 접착제의 소성 거동의 균질화 기법 연구)

  • Yong-Jun Cho;Jae-An Jeon;Kinal Kim;Po-Lun Feng;Steven Nutt;Sang-Eui Lee
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.199-204
    • /
    • 2023
  • A combination of a metallic mesh and an adhesive layer of metallic particle/epoxy composite was introduced as an intermediate layer to enhance the adhesion between cold-sprayed particles and fiber-reinforced composites (FRCs). Aluminum was considered for both the metallic particles in the adhesive and the metallic mesh. To predict the mechanical characteristics of the intermediate bond layer under a high strain rate, the properties of the adhesive layer needed to be calculated or measured. Therefore, in this study, the Al particle/epoxy adhesive was homogenized by using a rule of mixture. To verify the homogenization, the penetration depth, and the thickness decrease after the cold spray deposition from the undeformed surface, was monitored with FE analysis and compared with experimental observation. The comparison displayed that the penetration depth was comparable to the diameters of one cold spray particle, and thus the homogenization approach can be reasonable for the prediction of the stress level of particulate polymer composite interlayer under a high strain rate for cold spray processing.

Fabrication and Characterization of CNFs/Magnesium Composites Prepared by Liquid Pressing Process (액상가압공정을 이용한 CNF/Mg 복합재료의 제조 및 특성평가)

  • Kim, Hee-Bong;Lee, Sang-Bok;Yi, Jin-Woo;Lee, Sang-Kwan;Kim, Yang-Do
    • Composites Research
    • /
    • v.25 no.4
    • /
    • pp.93-97
    • /
    • 2012
  • Carbon nano fibers (CNFs) reinforced magnesium alloy (AZ91) matrix composites have been fabricated by liquid pressing process. In order to improve the dispersibility of CNFs and the wettability with magnesium alloy melt, CNFs were mixed with submicron sized SiC particles ($SiC_p$). Also, the mixture of CNFs and $SiC_p$ were coated with Ni by electroless plating. In liquid pressing process, AZ91 melts have been pressed hydrostatically and infiltrated into three reinforcement preforms of only CNFs, the mixture of CNFs and $SiC_p$ (CNF+$SiC_p$), and Ni coated CNFs and $SiC_p$ ((CNF+$SiC_p$)/Ni). Some CNFs agglomerates were observed in only CNFs reinforced composite. In cases of the composites reinforce with CNF+$SiC_p$ and (CNF+$SiC_p$)/Ni, CNFs were dispersed homogeneously in the matrix, which resulted in the improvement of mechanical properties. The compressive strengths of CNF+$SiC_p$ and (CNF+$SiC_p$)/Ni reinforced composites were 38% and 28% higher than that of only CNFs composite.