• Title/Summary/Keyword: Particle simulation method

Search Result 556, Processing Time 0.028 seconds

Two-Dimensional Particle Simulation for Behaviors of Floating Body near Quaywall during Tsunami (지진해일 중 해안안벽 주변의 부유체 거동에 관한 2차원 입자법 시뮬레이션)

  • Park, Ji-In;Park, Jong-Chun;Hwang, Sung-Chul;Heo, Jae-Kyung
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.12-19
    • /
    • 2014
  • Tsunamis are ocean waves generated by movements of the Earth's crust. Several geophysical events can lead to this kind of catastrophe: earthquakes, landslides, volcanic eruptions, and other mechanisms such as underwater explosions. Most of the damage associated with tsunamis are related to their run-up onto the shoreline. Therefore, effectively predicting the run-up process is an important aspect of any seismic sea wave mitigation effort. In this paper, a numerical simulation of the behaviors of a floating body near a quaywall during a tsunami is conducted by using a particle method. First, a solitary wave traveling over shallow water with a slope is numerically simulated, and the results are compared with experiments and other numerical results. Then, the behaviors of floating bodies with different drafts are investigated numerically.

Mitigation of Sub-synchronous Oscillation Caused by Thyristor Controlled Series Capacitor Using Supplementary Excitation Damping Controller

  • Wu, Xi;Jiang, Ping;Chen, Bo-Lin;Xiong, Hua-Chuan
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.2
    • /
    • pp.58-63
    • /
    • 2012
  • The Test Signal Method is adopted to analyze the impact of thyristor controlled series capacitor (TCSC) on sub-synchronous oscillation. The results show that the simulation system takes the risk of Sub-synchronous Oscillation (SSO) while the TCSC is operating in the capacitive region. A supplementary excitation damping controller (SEDC) is used to mitigate SSO caused by the TCSC. A new optimization method which is aimed for optimal phase compensation is proposed. This method is realized by using the particle swarm optimization (PSO) algorithm. The simulation results show that the SEDC designed by this method has superior suitability, and that the secure operation scope of the TCSC is greatly increased.

Particle Morphology Change and Quantitative Input Energy Variation during Stirred Ball Milling Process by DEM Simulation on Various Experimental Conditions (교반볼밀을 이용한 밀링공정에서 각종실험조건에 따른 구리분말의 입자형상 변화 및 DEM 시뮬레이션에 의한 정량적 에너지 변화)

  • Bor, Amgalan;Batjargal, Uyanga;Jargalsaikhan, Battsetseg;Lee, Jehyun;Choi, Heekyu
    • Korean Journal of Materials Research
    • /
    • v.28 no.3
    • /
    • pp.148-158
    • /
    • 2018
  • This study investigated the effect of the grinding media of a ball mill under various conditions on the raw material of copper powder during the milling process with a simulation of the discrete element method. Using the simulation of the three-dimensional motion of the grinding media in the stirred ball mill, we researched the grinding mechanism to calculate the force, kinetic energy, and medium velocity of the grinding media. The grinding behavior of the copper powder was investigated by scanning electron microscopy. We found that the particle size increased with an increasing rotation speed and milling time, and the particle morphology of the copper powder became more of a plate type. Nevertheless, the particle morphology slightly depended on the different grinding media of the ball mill. Moreover, the simulation results showed that rotation speed and ball size increased with the force and energy.

A Case Study of Fluid Simulation in the Film 'Sector 7' (사례연구: 영화 '7광구'의 유체 시뮬레이션)

  • Kim, Sun-Tae;Lee, Jeong-Hyun;Kim, Dae-yeong;Park, Yeong-Su;Jang, Seong-Ho;Hong, Jeong-Mo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.18 no.3
    • /
    • pp.17-27
    • /
    • 2012
  • In this paper, we describe a case study of the film 'Sector 7' which was produced by technologies applied fluid simulation. For the CG scenes in the movie which include highly detailed fluid motions, we used smoothed particle hydrodynamics(SPH) technique to express subtle movements of seawater from a crashed huge tank, and used hybrid simulation method of particles and levelsets to describe bursting water from a submarine's broken canopy. We also used detonation shock dynamics(DSD) technique for detailed flame simulations to produce a burning monster, the film"s main character. At this point, the divergence-free vortex particle method was applied to conserve the incompressible property of fluids. In addition, we used an upsampling method to achieve more efficient video production. Consequently, we could produce the high-quality visual effects by using the domestic technologies.

Numerical simulation on jet breakup in the fuel-coolant interaction using smoothed particle hydrodynamics

  • Choi, Hae Yoon;Chae, Hoon;Kim, Eung Soo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3264-3274
    • /
    • 2021
  • In a severe accident of light water reactor (LWR), molten core material (corium) can be released into the wet cavity, and a fuel-coolant interaction (FCI) can occur. The molten jet with high speed is broken and fragmented into small debris, which may cause a steam explosion or a molten core concrete interaction (MCCI). Since the premixing stage where the jet breakup occurs has a large impact on the severe accident progression, the understanding and evaluation of the jet breakup phenomenon are highly important. Therefore, in this study, the jet breakup simulations were performed using the Smoothed Particle Hydrodynamics (SPH) method which is a particle-based Lagrangian numerical method. For the multi-fluid system, the normalized density approach and improved surface tension model (CSF) were applied to the in-house SPH code (single GPU-based SOPHIA code) to improve the calculation accuracy at the interface of fluids. The jet breakup simulations were conducted in two cases: (1) jet breakup without structures, and (2) jet breakup with structures (control rod guide tubes). The penetration depth of the jet and jet breakup length were compared with those of the reference experiments, and these SPH simulation results are qualitatively and quantitatively consistent with the experiments.

An experimental study of vibration control of wind-excited high-rise buildings using particle tuned mass dampers

  • Lu, Zheng;Wang, Dianchao;Masri, Sami F.;Lu, Xilin
    • Smart Structures and Systems
    • /
    • v.18 no.1
    • /
    • pp.93-115
    • /
    • 2016
  • A particle tuned mass damper (PTMD) system is the combination of a traditional tuned mass damper (TMD) and a particle damper (PD). This paper presents the results of an experimental and analytical study of the damping performance of a PTMD attached to the top of a benchmark model under wind load excitation. The length ratio of the test model is 1:200. The vibration reduction laws of the system were explored by changing some system parameters (including the particle material, total auxiliary mass ratio, the mass ratio between container and particles, the suspending length, and wind velocity). An appropriate analytical solution based on the concept of an equivalent single-unit impact damper is presented. Comparison between the experimental and analytical results shows that, with the proper use of the equivalent method, reasonably accurate estimates of the dynamic response of a primary system under wind load excitation can be obtained. The experimental and simulation results show the robustness of the new damper and indicate that the damping performance can be improved by controlling the particle density, increasing the amount of particles, and aggravating the impact of particles etc.

Computations of Droplet Impingement on Airfoils in Two-Phase Flow

  • Kim, Sang-Dug;Song, Dong-Joo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.12
    • /
    • pp.2312-2320
    • /
    • 2005
  • The aerodynamic effects of leading-edge accretion can raise important safety concerns since the formulation of ice causes severe degradation in aerodynamic performance as compared with the clean airfoil. The objective of this study is to develop a numerical simulation strategy for predicting the particle trajectory around an MS-0317 airfoil in the test section of the NASA Glenn Icing Research Tunnel and to investigate the impingement characteristics of droplets on the airfoil surface. In particular, predictions of the mean velocity and turbulence diffusion using turbulent flow solver and Continuous Random Walk method were desired throughout this flow domain in order to investigate droplet dispersion. The collection efficiency distributions over the airfoil surface in simulations with different numbers of droplets, various integration time-steps and particle sizes were compared with experimental data. The large droplet impingement data indicated the trends in impingement characteristics with respect to particle size ; the maximum collection efficiency located at the upper surface near the leading edge, and the maximum value and total collection efficiency were increased as the particle size was increased. The extent of the area impinged on by particles also increased with the increment of the particle size, which is similar as compared with experimental data.

Three-Dimensional Particle-in-cell Simulation of Electron Cyclotron Resonance Plasma with Belt-type Magnet Assembly

  • Lee, Hui Jea;Kim, Seong Bong;Yoo, Suk Jae;Cho, Moohyun;Namkung, Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.242.1-242.1
    • /
    • 2014
  • The electron cyclotron resonance plasma source with a belt-type magnet assembly (BMA) is designed for effective plasma confinements. For characterizing the plasma source, the plasma parameters are measured by Langmuir probe. However, the plasma parameters and the motion of charged particles near the ECR zone are not easy to diagnostics, because of the high plasma density and temperature. Thus, as an alternative method, the electromagnetic simulation of the plasma source has been performed by using three-dimensional particle-in-cell and Monte Carlo collisional (PIC-MCC) simulation codes. For considering the limitation of simulation resources and time, the periodic boundary condition is applied and the coulomb collision is neglected. In this paper, we present the results of 3D PIC simulations of ECR plasmas with BMA and we compare them with the experimental results.

  • PDF

Start-to-end modeling and transmission efficiency optimization for a cyclotron-based proton therapy beamline

  • Yu Chen;Bin Qin;Xu Liu;Wei Wang;Yicheng Liao
    • Nuclear Engineering and Technology
    • /
    • v.56 no.10
    • /
    • pp.4365-4374
    • /
    • 2024
  • Utilizing first-order beam dynamics models is adequate for studying the beam properties during the conceptual design of a cyclotron-based proton therapy beamline. After finishing lattice design, particle-matter interaction simulations for passive elements (e.g., degrader, collimators, energy slit) are required. The cascade simulation is used for lattice updates in each iteration, which is complicated. In addition, when the models involve particle tracking and particle-matter interaction, their optimization process is time-consuming. Therefore, this study proposes a start-to-end modeling method using Monte Carlo Beam Delivery Simulation (BDSIM) software that considers more realistic factors, such as particle-matter interaction and the realistic vacuum chamber, to precisely evaluate working parameters, along with an efficient optimization method that utilizes multi-objective Bayesian optimization (MOBO) to improve transmission efficiency. Taking the Huazhong University of Science and Technology proton therapy facility (HUST-PTF) as an example, beam loss along the beamline is located, quantified, and subsequently reduced by tuning the quadrupole strengths based on MOBO. The results show that: (i) By considering the particle-matter interaction and the realistic vacuum chamber, the precision in the prediction of the beam properties is improved; (ii) After optimization, the transmission efficiency of the entire beamline is relatively increased by an average of 6.52 % under different energy settings, especially 11.39 % at 70 MeV.

Analysis of Submicron Gate GaAs MESFET's Characteristics Using Particle Model (입자모델을 이용한 서브마이크론 게이트 GaAs MESFET 특성의 해석)

  • 문승환;정학기;김봉렬
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.4
    • /
    • pp.534-540
    • /
    • 1990
  • In this paper the characteristics of submicron gate GaAs MESFET's have been studied using a particle model which takes into account the hot-electron transport phenomena, i.e., the velocity overshoot. \ulcornervalley(<000> direction), L valley (<111>direction), X valley (<100>direction) as the GaAs conduction energy band and optical phonon, acoustic phonon, equivalent intervalley, nonequivalent intervalley scattering as the scattering models, have been considered in this simulation. And the GaAs material and the device simulation have been done by determination of the free flight time, scattering mechanism and scattering angle according to Monte-Carlo algorithm which makes use of a particle model. As a result of the particle simulation, firstly the electron distribution, the potential energy distribution and the situation of electron displacement in 0.6 \ulcorner gate length device have been obtained. Secondly, the cutoff frequency, obtained by this method, is k47GHz which is in good agreement with the calculated result of theory. And the current-voltage characteristics curve which takes account of the buffer layer effect has been obtained. Lastly it has been verified that parasitic current at the buffer layer can be analyzed using channel depth modulation.

  • PDF