• Title/Summary/Keyword: Particle simulation method

Search Result 556, Processing Time 0.029 seconds

Eigenfunctions for Liouville Operators, Classical Collision Operators, and Collision Bracket Integrals in Kinetic Theory Made Amenable to Computer Simulations

  • Eu, Byung-Chan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.779-789
    • /
    • 2012
  • In the kinetic theory of dense fluids the many-particle collision bracket integral is given in terms of a classical collision operator defined in the phase space. To find an algorithm to compute the collision bracket integrals, we revisit the eigenvalue problem of the Liouville operator and re-examine the method previously reported [Chem. Phys. 1977, 20, 93]. Then we apply the notion and concept of the eigenfunctions of the Liouville operator and knowledge acquired in the study of the eigenfunctions to cast collision bracket integrals into more convenient and suitable forms for numerical simulations. One of the alternative forms is given in the form of time correlation function. This form, on a further manipulation, assumes a form reminiscent of the Chapman- Enskog collision bracket integrals, but for dense gases and liquids as well as solids. In the dilute gas limit it would give rise precisely to the Chapman-Enskog collision bracket integrals for two-particle collision. The alternative forms obtained are more readily amenable to numerical simulation methods than the collision bracket integrals expressed in terms of a classical collision operator, which requires solution of classical Lippmann-Schwinger integral equations. This way, the aforementioned kinetic theory of dense fluids is made fully accessible by numerical computation/simulation methods, and the transport coefficients thereof are made computationally as accessible as those in the linear response theory.

A Fluorescent Lamp Modeling for Inductor Ballast (인덕터 안전기용 형광램프 모델링)

  • 이진우
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.1
    • /
    • pp.9-14
    • /
    • 2004
  • The fluorescent lamp has been successfully modeled by employing the radial variation of particle density and considering driving circuit effects on the characteristics of discharge process. The electron energy distribution is assumed to have a Maxwellian. The electron mobility and the ambipolar diffusion coefficients are considered to vary with an electron energy rather than a simple uniform value. Energy states of mercury atom in the discharge process are regarded as six levels rather than simple 4 or 5 levels. These discharge processes have been accurately solved by numerically employing mixed the FDM and the 2nd Runge-Kutta method. This model was applied to analyzing real circuit. Simulation and experimental results were presented to verify the feasibility of the modeling. Simulation and experimental results were presented to verify the feasibility of the modeling.

Flow Visualization of Pulsatile Flow in a Branching Tube using the PIV System and Numerical Analysis (PIV와 수치해석을 이용한 분지관내 맥동유동의 가시화)

  • Roh, Hyung-Woon;Suh, Sang-Ho;Yoo, Sang-Sin
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.535-540
    • /
    • 2000
  • The objective of the present study is to visualize the pulsatile flow fields by using three-dimensional computer simulation and the PIV system. A closed flow loop system was built for the steady and unsteady experiments. The Harvard pulsatile pump was used to generate the pulsatile pressure and velocity waveforms. Conifer powder as the tracing particles was added to water to visualize the flow field. Two consecutive particle images were captured by a CCD camera for the image processing. The cross-correlation method in combination with the moving searching area algorithm was applied for the image processing of the flow visualization. The pulsatile flow fields were visualized effectively by the PIV system in conjunction with the applied algorithm. The range validation and the area interpolation methods were used to obtain the final velocity vectors with high accuracy. The finite volume predictions were used to analyze three-dimensional flow patterns in the bifurcation model. The results of the PIV experiment and the computer simulation are in good agreement and the results show the recirculation zones and formation of the paired secondary flow distal to the apex of the bifurcated model. The results also show that the branch flow is pushed strongly to the inner wall due to the inertial force effect and helical motions are generated as the flow proceeds toward the outer wall.

  • PDF

Influence of Impact from Anti-Aircraft Bullet on Rotorcraft Fuel Tank Assembly

  • Kim, Sung Chan;Kim, Hyun Gi
    • International Journal of Aerospace System Engineering
    • /
    • v.5 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • Military rotorcrafts are constantly exposed to risk from bullet impacts because they operate in a battle environment. Because bullet impact damage can be deadly to crews, the fuel tanks of military rotorcraft must be designed taking extreme situations into account. Fuel tank design factors to be considered include the internal fluid pressure, the structural stress on the part impacted, and the kinetic energy of bullet strikes. Verification testing using real objects is the best way to obtain these design data effectively, but this imposes substantial burdens due to the huge cost and necessity for long-term preparation. The use of various numerical simulation tests at an early design stage can reduce the risk of trial-and-error and improve the prediction of performance. The present study was an investigation of the effects of bullet impacts on a fuel tank assembly using numerical simulation based on SPH (smoothed particle hydrodynamics), and conducted using the commercial package, LS-DYNA. The resulting equivalent stress, internal pressure, and kinetic energy of the bullet were examined in detail to evaluate the possible use of this numerical method to obtain configuration design data for the fuel tank assembly.

Comparison of nano/micro lead, bismuth and tungsten on the gamma shielding properties of the flexible composites against photon in wide energy range (40 keV-662 keV)

  • Asgari, Mansour;Afarideh, Hossein;Ghafoorifard, Hassan;Amirabadi, Eskandar Asadi
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4142-4149
    • /
    • 2021
  • In the radiation protection application, the metal-polymer composites have been developed for their radiation shielding properties. In this research, the elastomer composites doped by 10 ㎛ and 100nm size of lead, bismuth and tungsten particles as filler with 30 and 60 wt percentages were prepared. To survey the shielding properties of the polymer composites using gamma-ray emitted from 152Eu and 137Cs sources, the gamma flux was measured by using NaI(Tl) detector, then the linear attenuation coefficient was calculated. Also, the Monte Carlo simulation (MCs) method was used. The results showed a direct relationship between the linear attenuation coefficients of the absorbent and filler ratio. Also, the decrease in the particle size of the shielding material in each weight percentage improved the radiation shielding features. When the dimension of the particles was in the order of nano-size, more attenuation was achieved. At low energies used for medical diagnostic X-ray applications due to the predominance of the photoelectric effect, bismuth and lead were suitable selection as filler.

Simulation and Modeling of Polyethylene/Clay Nanocomposite for Dielectric Application

  • Zazoum, Bouchaib;David, Eric;Ngo, Anh Dung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.4
    • /
    • pp.175-181
    • /
    • 2014
  • In this paper, the simulation and modeling of a polyethylene/clay nanocomposite were undertaken to predict the nanocomposite's dielectric behavior and to help design a nanocomposite material with optimum electrical properties for electrotechnical or electronic applications. A 3-D simulation model using the finite elements method was employed in order to study the effective permittivity and electric field distribution of two-phase nanocomposite materials for ordered and random distributions of inclusions in a low-loss host matrix such as polyethylene. The influence of the dispersion of reinforcing particles, and of the permittivity and radius of the inclusions, was analysed. The simulation results were compared with alternative, known theoretical solutions obtained from classical models, and were found to be in good agreement. The numerical results also indicate that for fixed volume fractions of nanoparticles the effective permittivity of the mixture, for ordered and random distributions, does not vary with the degree of dispersion. The variation of the effective permittivity with the particle radius is shown, using numerical data, to agree with the analytical modules.

WIND DRIVEN RAIN IMPACT ON A TALL BUILDING FACADE

  • Kim, Jong-Dae;Oh, Jung-Keun;Park, Byong-Keun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.242-246
    • /
    • 2010
  • To determine the trajectories and the impact of rain drops on the facade of a tall building, a particle tracking method is employed form steady state simulation of turbulent flow around the building. The simulation is performed for the upper part of the building comprising a detailed louver system. Rain is trapped at relative high rates on the roof and the penthouse, with Local Intensity Factors (LIF's) of the order of 1. The upper parapets and upper floors get a fair amount of wetting with LIF's of the order of 0.6. The wetting decreases downwards reaching values of 0.2 to 0.25 at the level of the louver system.

  • PDF

Measurement of Flow Field in the Pebble Bed Type High Temperature Gas-cooled Reactor (페블 베드 타입 고온 가스 냉각 원자로 내부 유동장 측정)

  • Lee, Sa-Ya;Lee, Jae-Young
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2088-2093
    • /
    • 2008
  • In this study, flow field measurement of the Pebble Bed Reactor(PBR) for the High Temperature Gas-cooled Reactor(HTGR) was performed. Large number of pebbles in the core of PBR provides complicated flow channel. Due to the complicated geometries, numerical analysis has been intensively made rather than experimental observation. However, the justification of computational simulation by the experimental study is crucial to develop solid analysis of design method. In the present study, a wind tunnel installed with pebbles stacked was constructed and equipped with the Particle Image Velocimetry(PIV). We designed the system scaled up to realize the room temperature condition according to the similarity. The PIV observation gave us stagnation points, low speed region so that the suspected high temperature region can be identified. With the further supplementary experimental works, the present system may produce valuable data to justify the Computational Fluid Dynamics(CFD) simulation method.

  • PDF

Determination of DEM Input Parameters for Dynamic Behavior Simulation of Aggregates (골재의 동적 거동 모사를 위한 DEM 입력변수의 결정 연구)

  • Yun, Tae Young;Yoo, Pyeong Jun;Kim, Yeon Bok
    • International Journal of Highway Engineering
    • /
    • v.16 no.1
    • /
    • pp.21-30
    • /
    • 2014
  • PURPOSES : Evaluation of input parameters determination procedure for dynamic analysis of aggregates in DEM. METHODS : In this research, the aggregate slump test and angularity test were performed as fundamental laboratory tests to determine input parameters of spherical particles in DEM. The heights spreads, weights of the simple tests were measured and used to calibrate rolling and static friction coefficients of particles. RESULTS : The DEM simulations with calibrated parameters showed good agreement with the laboratory test results for given dynamic condition. CONCLUSIONS : It is concluded that the employed calibration method can be applicable to determine rolling friction coefficient of DEM simulation for given dynamic conditions. However, further research is necessary to connect the result to the behavior of aggregate in packing and mixing process and to refine static friction coefficient.

Cloth simulation using a particle system on triangular mesh (삼각 메쉬 파티클 시스템을 이용한 직물 시뮬레이션)

  • Noh, Jae-Hee;Jung, Moon-Ryul
    • Journal of the Korea Computer Graphics Society
    • /
    • v.16 no.3
    • /
    • pp.31-39
    • /
    • 2010
  • The particle system based on quad mesh has been posed to model cloth. But we need to develop cloth models on triangular meshes because they are widely used. Cloth modeling on triangular mesh is often done in the style of finite element method, which assumes that material is continuous. To preserve the advantages of particle system, e.g. model simplicity and the ease of implementation, even on triangular mesh, this paper proposes a particle system on triangular mesh. The motion of cloth is modeled so that vertices interact with each other via the edges on the triangular mesh. The interactions of vertices are assumed to exist between every adjacent vertex and between every other vertex. The deformation energy due to interaction is constructed based on the theory of elasticity. The contribution of the paper is to implement the advantages of particle system on triangular mesh.