• Title/Summary/Keyword: Particle measurement

Search Result 1,197, Processing Time 0.038 seconds

RHEOLOGICAL PROPERTIES OF MAGNETIC PARTICLE SUSPENSIONS

  • Kwon, T.M.;Choi, H.J.;Jhon, M.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.667-671
    • /
    • 1995
  • The viscometric technique is used to study the effects of microstructure on the viscosity (viscosity vs. concentration or shear rate) of magnetic particle suspensions. In this characterization, measurement of suspension viscosity is used to obtain the dependence of viscous energy dissipation on microstructural state of dispersions. Microstructural shape effects which are related to particle orientation are then indirectly obtained. Empirical formulas from mean field theory and the Mooney equation, which are applicable at high concentration of magnetic particles, are used to relate viscosity to particle concentration. The validity and physical meaning of these equations are discussed.

  • PDF

The Measurement of Soot Particle Temperatures Using a Ratio Pyrometry (Ratio Pyrometry를 이용한 매연입자 온도 계측에 대한 고찰)

  • Nam, Youn-Woo;Lee, Won-Nam;Lee, Chun-Beom
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.124-129
    • /
    • 2004
  • The ratio pyrometry has been investigated experimentally for the measurement of soot particle temperatures in a diffusion flame. A tungsten lamp calibration system was constructed and used in order to calibrate the ratio pyrometry and two-color pyrometry using a KL-factor method. Once the ratio pyrometry is properly calibrated, temperatures measured using a ratio pyrometry were virtually identical to those obtained from a KL-factor method. The effect of soot volume fraction on temperature measurement was almost negligible, and therefore, the ratio pyrometry could provide the useful temperature information of sooting flames. The potential application of a ratio pyrometry to a 2-D temperature measurement without sacrificing the accuracy was demonstrated.

  • PDF

Flow Velocity Measurement for Laminar Diffusion Flames Utilizing LII Signal from Soot Particles (매연입자의 LII 신호를 이용한 충류확산화염 유동속도 측정)

  • Lee, Jung-Soo;Nam, Youn-Woo;Lee, Won-Nam
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.157-163
    • /
    • 2006
  • A new technique utilizing LII signal for the measurement of flow velocities of laminar diffusion flames has been investigated. Soot particles in ethylene diffusion flames are heated by a modulated Ar-ion laser beam. LII signals and their phase angles are measured using a lock-in amplifier at the different flame heights and the axial flow velocity are obtained from the measured phase angle delay. The measured velocities are similar to those from LDV measurements under the same operating conditions. The effects of laser power, LII signal wavelength, and modulation frequency are not sensitive to the velocity measurement. However, the choice of an optical chopper blade type could affect the measurement result. The use of a 6/5 chopper blade showed the better result that is possibly due to the square shape of modulated laser beam. This study successfully demonstrated that axial flow velocities of laminar diffusion flames can be measured by a new technique utilizing LII signal, which does not need particle seeding unlikely to LDV or PIV techniques.

  • PDF

Soot Primary Particle Size Measurement in a Ethylene Diffusion Flame Using Time-Resolved Laser-Induced Incandescence (2차원 시분해 레이저 유도 백열법을 이용한 에틸렌 확산 화염에서의 매연 입자 크기 측정)

  • Shon, Moo-Kang;Moon, Gun-Feel;Kim, Gyu-Bo;Lee, Jong-Ho;Jeong, Dong-Soo;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1140-1145
    • /
    • 2004
  • Laser-induced incandescence (LII) is introduced as a valuable tool for the characterization of nanoparticles in flame environments. This technique is based on the heating of the particles by a short laser pulse and the subsequent detection of the thermal radiation. It has been applied successfully for the investigation of soot in different fields of application. The evaluation of the temporal decay of the laser-induced incandescence (LII) signal from soot particles is introduced as a technique to obtain two-dimensional distributions of particle sizes and is applied to a laminar diffusion flame. This novel approach to soot sizing exhibits several theoretical and technical advantages compared with the established combination of elastic scattering and LII, especially as it yields absolute sizes of primary particles without requiring calibration. With this technique a spatially resolved 2-D measurement of soot primary particle sizes is feasible in a combination process form the ratio of emission signals obtained at two delay times after a laser pulse, as the cooling behavior is characteristic of particle size.

  • PDF

Measurement of Defect Energy Level in MgO Layer

  • Son, Chang-Gil;Song, K.B.;Jeoung, S.J.;Park, E.Y.;Kim, J.S.;Choi, E.H.;J, S.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1380-1383
    • /
    • 2007
  • The secondary electron emission coefficient (${\gamma}$) of the cathode is an important factor for improving the discharge characteristics of AC-PDP, because of its close relationship to discharge voltage. In this experiment, we have investigated the electronic structure of the energy band in the MgO layer responsible for the high ${\gamma}$. We used three kinds of MgO pellet that have another component, and each MgO layers have been deposited by electron beam evaporation method. The work-functions of MgO layer have been investigated from their ion-induced secondary electron emission coefficient (${\gamma}$), respectively, using various ions with different ionization energies in a ${\gamma}-FIB$ (Focused Ion Beam) system. We have compared work-function with ${\gamma}-FIB$ system current signal for measurement defect energy level in MgO layer. MgO-A in the three types has lowest work-function value (4.12eV) and there are two defect energy levels.

  • PDF

Measurement of Particle Deposition Velocity toward a Horizontal Semiconductor Wafer Using a Wafer Surface Scanner (Wafer Surface Scanner를 이용한 반도체 웨이퍼상의 입자 침착속도의 측정)

  • Bae, G.N.;Park, S.O.;Lee, C.S.;Myong, H.K.;Shin, H.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.2
    • /
    • pp.130-140
    • /
    • 1993
  • Average particle deposition velocity toward a horizontal semiconductor wafer in vertical airflow is measured by a wafer surface scanner(PMS SAS-3600). Use of wafer surface scanner requires very short exposure time normally ranging from 10 to 30 minutes, and hence makes repetition of experiment much easier. Polystyrene latex (PSL) spheres of diameter between 0.2 and $1.0{\mu}m$ are used. The present range of particle sizes is very important in controlling particle deposition on a wafer surface in industrial applications. For the present experiment, convection, diffusion, and sedimentation comprise important agents for deposition mechanisms. To investigate confidence interval of experimental data, mean and standard deviation of average deposition velocities are obtained from more than ten data set for each PSL sphere size. It is found that the distribution of mean of average deposition velocities from the measurement agrees well with the predictions of Liu and Ahn(1987) and Emi et al.(1989).

  • PDF

Characteristics of particles at Kosan, Cheju Island: Intensive study results duting March 11 .sim. 17 1994 (제주도 고산지역 입자특성 : 1994년 3월 11일 - 17일 측정결과)

  • 김용표;심상규;문길주;백남준;김성주;허철구;강창희
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.11 no.3
    • /
    • pp.263-272
    • /
    • 1995
  • Characteristics of anbient at Korean, Cheju Island have been studied during the intensive field study period on March 11 .sim. 17, 1994 in collaboration with other research organizations from Korea and abroad. The particle size distribution was measured using an Electrical Aerosol Analyzer(EAA) and an Optical particle Counter(OPC). Fine particles(PM1 and PM3) have been collected by filter pack samplers and their ionic compositions have been analyzed. sampling errors inherent to the filter pack sampling method are discussed and the method to analyze those errors are presented. The rine mass concentrations of this study show very similar mass concentrations when Seoul is clear. This is somewhat surprising result, because the most of researchers believe that Kosan is one of the cleanest area in Korea. Bimodal volume size distributions with peak values around 0.1 .sim. 0.2.mu.m and 3.mu.m in particle dimeter were observed for most of the measurement period, particle mass loadings and ionic composition data show a large fraction of particles are from non-sea salt origins. Estimation of water content and acidity of particles based on measurement by a gas/particle equilibrium model, SCAPE, reveals that the pH values of particles are comparable to or lower than those estimated based on measurements in Los Angeles, U.S.A. during the SCAQS study. These findings with the meteorological conditions during the study period suggest that the particles collected during the period have originated from outside Cheju Island.

  • PDF

Mass Prediction of Various Water Cluster Ions for an Accurate Measurement of Aerosol Particle Size Distribution (에어로솔 입자의 정밀입경분포 측정을 위한 물분자 클러스터 이온의 질량예측)

  • Jung, Jong-Hwan;Lee, Hye-Moon;Song, Dong-Keun;Kim, Tae-Oh
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.6
    • /
    • pp.752-759
    • /
    • 2007
  • For an accurate measurement of aerosol particle size distribution using a differential mobility analyser (DMA), a new calculation process, capable of predicting the masses for the various kinds of water cluster ions generated from a bipolar ionizer, was prepared by improving the previous process. The masses for the 5 kinds of positive and negative water cluster ions produced from a SMAC ionizer were predicted by the improved calculation process. The aerosol particle charging ratios calculated by applying the predicted ion masses to particle charging equations were in good accordance with the experimentally measured ones, indicating that the improved calculation process are more reasonable than the previous one in a mass prediction of bipolar water cluster ions.

Comparison of Real Time Nanoparticle Monitoring Instruments in the Workplaces

  • Ham, Seunghon;Lee, Naroo;Eom, Igchun;Lee, Byoungcheun;Tsai, Perng-Jy;Lee, Kiyoung;Yoon, Chungsik
    • Safety and Health at Work
    • /
    • v.7 no.4
    • /
    • pp.381-388
    • /
    • 2016
  • Background: Relationships among portable scanning mobility particle sizer (P-SMPS), condensation particle counter (CPC), and surface area monitor (SAM), which are different metric measurement devices, were investigated, and two widely used research grade (RG)-SMPSs were compared to harmonize the measurement protocols. Methods: Pearson correlation analysis was performed to compare the relation between P-SMPS, CPC, and SAM and two common RG-SMPS. Results: For laboratory and engineered nanoparticle (ENP) workplaces, correlation among devices showed good relationships. Correlation among devices was fair in unintended nanoparticle (UNP)-emitting workplaces. This is partly explained by the fact that shape of particles was not spherical, although calibration of sampling instruments was performed using spherical particles and the concentration was very high at the UNP workplaces to allow them to aggregate more easily. Chain-like particles were found by scanning electron microscope in UNP workplaces. The CPC or SAM could be used as an alternative instrument instead of SMPS at the ENP-handling workplaces. At the UNP workplaces, where concentration is high, real-time instruments should be used with caution. There are significant differences between the two SMPSs tested. TSI SMPS showed about 20% higher concentration than the Grimm SMPS in all workplaces. Conclusions: For nanoparticle measurement, CPC and SAM might be useful to find source of emission at laboratory and ENP workplaces instead of P-SMPS in the first stage. An SMPS is required to measure with high accuracy. Caution is necessary when comparing data from different nanoparticle measurement devices and RG-SMPSs.

Investigation of the Change of Soil Arch Structure in Model Particle Assembly Subjected to Displacing Trapdoor via Photoelastic Measurement Technique (트랩도어 하강이 일어나는 모형 입자 입상체에서 광탄성 측정 기법을 이용한 흙 아치 구조의 변화 조사)

  • Shin, Sang-Young;Jung, Young-Hoon;Kim, Taesik
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.10
    • /
    • pp.31-40
    • /
    • 2016
  • In order to investigate the change in soil arch structure developed within the soil subjected to trapdoor movement, various responses in the deformed particle assembly were observed via photoelastic measurement technique. The particle assembly was composed of the regularly stacked model particles coated by thin photoelastic material. Variation of the internal structure transmitting contact forces were observed by taking images showing the photoelastic responses and compared with the change in slip lines and pressures measured by load cells placed beneath the assembly. Initial soil arch structure established immediately after the trapdoor movement collapsed progressively and meanwhile a new extended structure was developed against further movement of the trapdoor. For the sufficient movement of the trapdoor, initially identical regions bounded by the soil arch structure and slip lines were separated and the region enclosed by slip lines became a part of the region loosing the transmitting contact forces identified by photoelastic measurement.