• Title/Summary/Keyword: Particle measurement

Search Result 1,197, Processing Time 0.022 seconds

Chemical Composition of Fine Aerosol Associated with Visibility Degradation in Seoul Metropolitan Area in 1994 (1994년 수도권 지역에서의 시정과 미세 입자상물질 화학조성과의 관계해석)

  • 한진석;김병곤;김신도
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.4
    • /
    • pp.377-387
    • /
    • 1996
  • This study was carried out to monitor the visibility including measurement and analysis of the various parameters such as particle size distribution, chemical composition, and meteorotical conditions to understand the characteristics and causes of this phenomenon. According to the analysis of intensive sampling, $SO_4^{2-}, NO-3^-, Cl^-, NH_4^+$ ion concentration increased together with the mass concentration around 1 $\mu$m in the case of low visibility. $(NH_4)_2SO_4, NH_4NO_3$, and $NH_4Cl$ were thought to be the major components of fine particles. The statistical analysis showed that the scattering effect of particle was 81.2%, the absorption effect was 14.9%. Therefore, these effects were the major factors to reduce the visibility. In conclusion, the visibility was reduced by the fine particle of sulfate (18.6%), nitrate (14.2%), organic carbon (10.8%), element carbon (25.8%), and residual (24.8%) during this study.

  • PDF

Turbidimetric Measurement for On-line Monitoring of SiO2 Particles

  • Kim, In-Sook;Kim, Yang-Sun;Lim, H.B.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.6
    • /
    • pp.801-805
    • /
    • 2004
  • In this work, the fundamental study of on-line monitoring of $SiO_2$ particles in the size range of 40 nm to 725 nm was carried out using turbidimetry. The size of particle was measured using a field emission scanning electron microscope (FE-SEM). The factors affecting on the turbidity were discussed, for example, wavelength, size, and concentration. In order to observe the dependence of turbidity on the wavelength, a turbidimetric system equipped with charged coupled detector (CCD) was built. The shape of the transmitted peak was changed and the peak maximum was shifted to the red when the concentration of particle was increased. This result indicates that the turbidity is related to the wavelength, which corresponds to the characteristic of the Mie extinction coefficient, Q, that is a function of not only particle diameter and refractive index but also wavelength. It is clear that a linear calibration curve for each particle in different size can be obtained at an optimized wavelength.

Development of the Scanning PIV Method with Single Optical Axis (단일 광경로 스캐닝 PIV기법 개발)

  • Kim, Hyoung-Bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.2 s.257
    • /
    • pp.181-187
    • /
    • 2007
  • Conventional PIV method uses two optical axis configuration during the image grabbing process. That is, the illumination plane and the recording plane must be parallel. This configuration is very natural to grab the whole field without the image distortion. In the real problem, it is often to meet the situation when this configuration is hard to be fulfilled. In the present study, the new PIV method which uses only single optical axis to grab the particle images is developed. This new PIV method becomes possible by utilizing the scanning method similar to the echo PIV technique. One particle image of the scanning PIV consists of scanned several line images and by repeating this scanning process, two particle images were grabbed and processed to produce the velocity vectors. An optimization study was performed to find parameters which minimize the measurement errors. The effects of particle diameter, beam overlap ratio and particle number density were investigated.

An Analysis of Driving Property of a Reflective Electronic Display Fabricated by Using Filtering Method of Non-moving Particles

  • Kim, Young-Cho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.5
    • /
    • pp.233-236
    • /
    • 2012
  • The driving properties of a particle-insertion method that filters non-moving particles are analyzed, by measuring its optical and electrical properties. An area that is occupied by the moved particles is proposed, as a desirable evaluation method for a reflective display. To compare the driving property of the particle-moving method with that of the reported simple particle-loading method, two panels are fabricated, according to the different particle-insertion methods, in the same panel condition, of which the width of ribs is $30{\mu}m$, the cell size is $220{\mu}m{\times}220{\mu}m$, the cell gap is $116-120{\mu}m$, the q/m value of the black particles is $+1.8{\mu}C/g$ and that for the white particles is $-4.3{\mu}C/g$. The particle-moving method has a filtering effect which excludes the non-moving particles, inserting only movable particles into the respective cell, so that a panel fabricated by the particle-moving method can drive most of the particles in a cell. Also, most of the particles move at the threshold voltage of 40 V, with enhanced reflectivity. The driving property is also verified by measurement of the occupation rate of the moved particles.

Emission Characteristics of Nano-sized Particles in Bio-ethanol Fuelled Engine with Different Injection Type (바이오-에탄올연료 및 분사방식에 따른 엔진 나노입자 배출 특성)

  • Lee, Jin-Wook;Patel, Rishin;Ladommatos, Nicos
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.55-62
    • /
    • 2009
  • As an experiment investigation, the effects of ethanol blended gasoline fuel with different injection method on nano-sized particle emission characteristics were examined in a 0.5L spark-ignited single-cylinder engine with a compression ratio of 10. Because this engine nano-particles are currently attracting interest due to its adverse health effects and their impact on the environments. So a pure gasoline and an ethanol blended gasoline fuels, namely E85 fuel, used for this study. And, as a particle measuring instrument, a fast-response particle spectrometer (DMS 500) with heated sample line was used for continuous measurement of the particle size and number distribution in the size range of 5 to 1000nm (aerodynamic diameter). As this research results, we found that the effect of ethanol blending gasoline caused drastic decrease of nano-particle emissions when port fuel injection was used for making better air-fuel mixture than direct fuel injection. Also injection timing, specially direct fuel injection, could be a dominant factor in controlling the exhaust particle emissions.

Effects of Temperature and Precursor-concentration on Characteristics of TiO2 Nanoparticles in Chemical Vapor Condensation Process -Part I: Real-time Particle Characterization by SMPS (화학기상응축 공정에서 TiO2 나노입자 특성에 미치는 반응온도와 전구체 농도의 영향 - Part I: SMPS를 이용한 실시간 입자특성 평가)

  • Lee, Chang-Woo;Yu, Ji-Hun;Im, Sung-Soon;Yun, Sung-Hee;Lee, Jai-Sung;Choa, Yong-Ho
    • Korean Journal of Materials Research
    • /
    • v.13 no.5
    • /
    • pp.323-327
    • /
    • 2003
  • Properties of nanoparticles synthesized during gas phase reaction were studied in terms of particle behaviors using real-time particle characterization method. For this study, $TiO_2$ nanoparticles were synthesized in the chemical vapor condensation process(CVC) and their in-situ measurement of particle formation and particle size distribution was performed by scanning mobility particle sizer(SMPS). As a result, particle behaviors in the CVC reactor were affected by both of number concentration and thermal coagulation, simultaneously. Particularly, growth and agglomeration between nanoparticles followed two different ways of dominances from coagulations by increase of number concentration and sintering effect by increased temperature.

Effects of Particle Measuring Conditions on Diesel Nanoparticles Distribution (입자측정조건이 디젤 나노입자의 입경분포에 미치는 영향)

  • Lee, Jin-Wook;Kim, Hong-Suk;Jeong, Young-Il
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.5
    • /
    • pp.653-660
    • /
    • 2006
  • Due to the stronger exhaust emission regulations and the introduction of advanced technology in Diesel engine, the specific Diesel particulate matters have decreased by about one order of magnitude since the 1980's. In recent years, particle number emissions rather than particulate mass emissions have become the subject of controversial discussions. Recent results from health studies imply that it is possible that particulate mass does not properly correlated with the variety of health effects attributed to Diesel exhaust. Concern is instead now focusing on nano-sized particles. This study has been performed for the better understanding about the Diesel nano-particle measurement and size distribution characteristics in the exhaust system of a turbo charged Diesel engine. A scanning mobility particle sizer(SMPS) system was applied to measure the particle number and size concentration of Diesel exhaust particles. As the experimental results, the number concentrations in the particle size (Dp<200 nm) were very sensitive to dilution conditions. Specially the changes in nano-particle number concentrations(Dp<50 nm) increased along the downstream of exhaust flow. Also we found the dilution conditions were influencing the condensation of SOF and $H_2O$ during dilution and cooling of hot exhaust.

Measurement and analysis of PM10 and PM2.5 from chimneys of coal-fired power plants using a light scattering method (광산란법을 이용한 국내 석탄화력발전소 굴뚝에서 배출되는 PM10, PM2.5 측정 및 분석)

  • Shin, Dongho;Kim, Younghun;Hong, Kee-Jung;Lee, Gunhee;Park, Inyong;Kim, Hak-Joon;Kim, Yong-Jin;Han, Bangwoo;Hwang, Jungho
    • Particle and aerosol research
    • /
    • v.16 no.4
    • /
    • pp.131-140
    • /
    • 2020
  • Air pollutants emitted from chimneys of coal-fired power plants are considered to be a major source of fine particulate matter in the atmosphere. In order to manage fine particle in the chimney of a coal-fired power plant, it is necessary to know the concentration of fine particle emitted in real time, but the current system is difficult. In this study, a real-time measurement system for chimney fine particle was developed, and measurements were performed on six coal-fired power plants. Through the measurements, the mass concentration distribution according to the particle size could be secured. All six chimneys showed bimodal distribution, and the count median diameters of each mode were 0.5 and 1.1 ㎛. In addition, it was compared with the gravimetric measurement method, and it was determined that the relative accuracy for PM10 was within 20%, and the value measured using the developed measuring instrument was reliable. Finally, three power plants were continuously measured for one month, and as a result of comparing the concentration of PM10 according to the amount of power generation, it was confirmed that the PM10 discharged from the chimney increased in the form of an exponential function according to the amount of power generation.

Modulated LII technique for the Measurement of Flow Velocity in Laminar Flames (층류화염 유동속도 측정을 위한 modulated LII 기법)

  • Lee, Won-Nam;Lee, Jung-Soo;Nam, Youn-Woo
    • Journal of the Korean Society of Combustion
    • /
    • v.11 no.3
    • /
    • pp.36-43
    • /
    • 2006
  • The modulated LII technique has been suggested for the measurement of axial velocity profiles of laminar diffusion flames. The theoretical background is explained based on the blackbody radiation and LII signal. Experimentally, soot particles in ethylene diffusion flames are heated by a modulated Ar-ion laser beam. LII signals and their phase angles are measured using a lock-in amplifier at the different flame heights and the axial flow velocities are obtained from the measured phase angle delay informations. The measured velocities are similar to those from LDV measurements under the same operating conditions. The effects of laser power, LII signal wavelength, and modulation frequencies are not sensitive to the velocity measurement. However, the choice of an optical chopper blade type could affect the measurement result. The use of a 6/5 chopper blade showed the better result that is. possibly due to the square shape of modulated laser beam. This study successfully demonstrated that axial flow velocities of laminar diffusion flames can be measured by a new technique utilizing LII signal, which does not need particle seeding unlikely to LDV or PIV techniques.

  • PDF