• Title/Summary/Keyword: Particle dispersion

Search Result 667, Processing Time 0.028 seconds

Evaluation of Thermal Behavior of Oil-based $Al_2O_3$ Nanofluids (오일 기지 알루미나 나노유체의 열적거동 평가)

  • Choi, Cheol;Yoo, Hyun-Sung;Oh, Je-Myung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.176-177
    • /
    • 2006
  • Two kinds of alumina nanofluids are prepared by dispersing $Al_2O_3$ nanoparticles m transformer oil. The thermal conductivity of the nanoparticle-oil mixtures increases with particle volume fraction and thermal conductivity of the solid particle itself. The $Al_2O_3$ nanoparticles at a volume of 0.5% can increase the thermal conductivity of the transformer oil by 5.7%, and the overall heat transfer coefficient by 20%. From the natural convection test using a prototype transformer, the cooling effect of $Al_2O_3$-oil nanofluids on the heating element and oil itself is confirmed. However, excessive quantities of the surfactant have a harmful effect on viscosity, and thus it is strongly recommended to control the addition of the surfactant with great care.

  • PDF

Simulation of viscous and inviscid rayleigh-taylor instability with surface tension by using MPS

  • Kim, Kyung Sung;Kim, Moo Hyun
    • Ocean Systems Engineering
    • /
    • v.8 no.2
    • /
    • pp.167-182
    • /
    • 2018
  • RTI (Rayleigh-Taylor instability) is investigated by a multi-liquid MPS (Moving Particle Semi-implicit) method for both viscous and inviscid flows for various density differences, initial-disturbance amplitudes, viscosities, and surface tensions. The MPS simulation can be continued up to the late stage of high nonlinearity with complicated patterns and its initial developments agree well with the linear theoretical results. According to the relevant linear theory, the difference between inviscid and viscous fluids is the rising velocity at which upward-mushroom-like RTI flow with vortex formation is generated. However, with the developed MPS program, significant differences in both growing patters and developing speeds are observed. Also, more dispersion can be observed in the inviscid case. With larger Atwood (AT) number, stronger RTI flows are developed earlier, as expected, with higher potential-energy differences. With larger initial disturbances, quite different patterns of RTI-development are observed compared to the small-initial-disturbance case. If AT number is small, the surface tension tends to delay and suppress the RTI development when it is sufficiently large. Interestingly, at high AT number, the RTI-suppressions by increased surface tension become less effective.

Surface Plasmon Resonances of Metal Colloidal Particles Synthesized by a Photo-Chemical Process (광화학적 방법을 이용한 금속입자의 합성과 광학적 특성 연구)

  • Ko, Min-Jin;Plawsky, Joel
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.1
    • /
    • pp.1-7
    • /
    • 1999
  • Metal colloidal particles have been prepared by a photo-chemical process in an aqueous solution containing semiconductor nanocrystallites. Metal colloidal particles produced in CdS and AgBr exhibit different absorption spectra. Au particles produced in solution with CdS show typical Au plasmon resonance absorption spectra. On the other hand Ag particles in solution with AgBr shows surface plasmon resonance absorption spectra which are red-shifted, as compared to that of a dispersion of homogeneous Ag colloidal particles in the same host. The extent of red-shift depends on the UV illumination time. This phenomenon is interpreted within the context of effective medium theory for small volume fractions. From the theory, a metal coated particle predicts Ag plasmon resonance, red shifted with respect to 400 nm that would be associated with a silver particle in solution. The absorption peak position is very sensitive to the coating thickness.

  • PDF

Particle Dispersibility Improvement of Polyester Fibers with a New Line Injection

  • Park, Seong-Yoon;Kim, Hak-Yong;Jin, Fan-Long;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2637-2643
    • /
    • 2010
  • In order to develop a new line injection system for spin draw yarn (FD SDY) fibers, the effect of various parameters in extrusion and melt line conditions on the dispersion and distribution of $TiO_2$ particles within FD PET fibers was investigated. As a result, the dispersibility of $TiO_2$ particles in a PET matrix is found to depend on the particle size and its surface characteristics. Surface modification of $TiO_2$ by dimethyl polysiloxane resulted in the improved dispersibility and affinity of $TiO_2$ particles in the PET matrix. Especially, residence time, mixing temperature, and mixing shear rate in the new line injection system under the SDY spinning process were very important parameters to minimize the agglomeration of $TiO_2$ particles. The FD SDY prepared by the new line injection system was superior to those using the polymerization process and the conventional masterbatch chip dosing process in the color-L and color-b values of the fibers.

Investigation of Thermal Conductivity and Convective Heat Transfer of Alumina Nanofluids under Laminar Flow

  • Seung-Il, Choi;Hafizur-Rehman, Hafizur-Rehman;Eom, Yoon-Sub;Ji, Myoung-Kuk;Kim, Jun-Hyo;Chung, Han-Shik;Jeong, Hyo-Min
    • Journal of Power System Engineering
    • /
    • v.17 no.2
    • /
    • pp.78-86
    • /
    • 2013
  • In this research, dilute colloidal suspension alumina nanofluids were prepared by dispersing alumina nanoparticles in DI water and ethylene glycol as base fluids. Particle size analyzer and TEM test results revealed that the size of the alumina nanofluids(3wt% and 5wt%) with dispersion time 3hrs were 46nm and 60nm respectively. Thermal conductivity of these alumina nanofluids was measured by means of hot wire technique using a LAMBDA system. For water based alumina nanofluids, thermal conductivity enhancement was from 2.29% to 3.06% with 5wt% alumina at temperatures ranging from 15 to $40^{\circ}C$. Whereas in case of ethylene glycol based alumina nanofluids under the same temperature range, thermal conductivity enhancement was from 9.6% to 10% with 5wt% alumina. An enhancement of 37% average convective heat transfer was achieved with 5wt% alumina nanofluids at Re of 1,100.

Polymeric Interactions of Dispersant and Binder in Aqueous Silicon Nitride Suspensions (질화규소 현탁액에서 분산제와 결합제의 상호작용연구)

  • Kim, Bong-Ho;Kim, Myong-Ho;Lee, Soo;Paik, Un-Gyu
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.8
    • /
    • pp.901-908
    • /
    • 1995
  • In aqueous slurry processing of silicon nitride, the interaction of dispersant and binder used as polymeric processing additives on the silicon nitride particle surface was studied to identify the effect of these processing polymeric additives on the ceramic powder processing. The adsoprtion isotherm study of anionic organic molecule as dispersant and nonionic organic molecules as binder of silicon nitricde was studied to investigate the effect of these processing organic additives on the physicochemical properties of silicon nitride particles. As anionic molecule adsorbed onto silicon nitrice surface, the IEP of silicon nitride shifted toward acidic pH and changed the stability of silicon nitride particle. However, the adsorption of binder as nonionic organic molecule onto silicon nitride surface did not changed the IEP but caused the decrease of electrostatic potentials of silicon nitride. These distinctive adsorption behaviors of organic additives on silicon nitride particles can be closely correlated to the stability of silicon nitride particles suspended in aqueous media.

  • PDF

Evaluation on Light Scattering Behavior of a Pulverized Coal Suspension (슬러리내 석탄입자의 광산란 특성 평가)

  • Hwang, Munkyeong;Nam, Hyunsoo;Kim, Kyubo;Song, Juhun
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.5
    • /
    • pp.451-460
    • /
    • 2013
  • In a direct coal fuel cell (DCFC) system, it is essential to identify volume fraction of coal suspended in electrolyte melt in order to control its dispersion and fluidity. This requirement is compelling especially at anode channel where hot slurry is likely to flow at low velocity. In this study, light scattering techniques were employed to measure the volume fraction for a pulverized coal suspension with relatively high absorption coefficient. The particle size, scattering angle, and volume fraction were varied to evaluate their effects on the scattering behavior as well as scattering regime. The larger coal size and smaller forward scattering angle could provide a shift to more favorable scattering regime, i.e., independent scattering, where interferences of light scattering from one particle with others are suppressed.

Time-Resolved Two-Phase PIV Measurements of Freely Rising Bubble Flows with an Image Separation Method (단일 카메라의 영상분리를 이용한 자유 상승 기포의 고속 이상 유동 PIV 계측)

  • Sung Jaeyong;Park Sang Min;Yoo Jung Yul
    • Journal of the Korean Society of Visualization
    • /
    • v.2 no.1
    • /
    • pp.39-45
    • /
    • 2004
  • A time-resolved two-phase PIV system using a single camera has been developed, which introduces a method of image separation into respective phase images, and is applied to freely rising single bubble. Gas bubble, tracer particle and background have different gray intensity ranges on the same image frame when reflection and dispersion in the phase interface are intrinsically eliminated by optical filters and fluorescent particles. Further, the signals of the two phases do not interfere with each other. Gas phase velocities are obtained from the separated bubble image by applying the two-frame PTV. On the other hand, liquid phase velocities are obtained from the tracer particle image by applying the cross-correlation algorithm. As a result, the bubble rises rectilinearly just after it is released from an injector and then has a zigzag motion in the far field. From the trajectory of the bubble, it is found that the period of the zigzag motion is closely related to the vortex shedding although the wavelength of it varies along its movement.

  • PDF

Observation on the Microstructures of Cu-TiB2 Composites with Wear Behavior (Cu-TiB2 복합재료의 마모거동에 따른 미세조직 관찰)

  • Lee, Tae-Woo;Kang, Kae-Myung
    • Korean Journal of Materials Research
    • /
    • v.16 no.8
    • /
    • pp.511-515
    • /
    • 2006
  • The dispersion hardened $Cu-TiB_2$ composites are a promising candidate for applications as electrical contact materials. The $Cu-TiB_2$ composites for electrical contact materials can reduce material cost and resource consumption caused by wear, due to their good mechanical and electrical properties. In this study, we investigated the wear phenomenon for $Cu-TiB_2$ composites fabricated with hot extrusion, by varying particle sizes and volume fractions of $TiB_2$. The wear tests were performed under the dry sliding condition with a fixed total sliding distance of 40 m. The contact loads at a constant speed of 3.5 Hz were 20, 40, 60, and 80 N. The friction coefficients and wear losses were measured during wear tests. Worn surfaces and wear debris after wear tests were investigated using the scanning electron microscope and the optical microscope. The microstructures of interface between Cu matrix and $TiB_2$ particle before and after wear tests were studied by the transmission electron microscope.

Fabrication of Core-Shell Structured Ni-Based Alloy Nanopowder by Electrical Wire Explosion Method

  • Lee, A-Young;Lee, Gwang-Yeob;Oh, Hye-Ryeong;Kim, Hyeon-Ah;Kim, Song-Yi;Lee, Min-Ha
    • Journal of Powder Materials
    • /
    • v.23 no.6
    • /
    • pp.409-413
    • /
    • 2016
  • Electrical wire explosion in liquid media is a promising method for producing metallic nanopowders. It is possible to obtain high-purity metallic nanoparticles and uniform-sized nanopowder with excellent dispersion stability using this electrical wire explosion method. In this study, Ni-Fe alloy nanopowders with core-shell structures are fabricated via the electrical explosion of Ni-Fe alloy wires 0.1 mm in diameter and 20 mm in length in de-ionized water. The size and shape of the powders are investigated by field-emission scanning electron microscopy, transmission electron microscopy, and laser particle size analysis. Phase analysis and grain size determination are conducted by X-ray diffraction. The result indicate that a core-shell structured Ni-Fe nanopowder is synthesized with an average particle size of approximately 28 nm, and nanosized Ni core particles are encapsulated by an Fe nanolayer.