• Title/Summary/Keyword: Particle dispersion

Search Result 662, Processing Time 0.031 seconds

Numerical Simulation far the Non-Spherical Aggregation of Charged Particles (하전 입자의 비구형 응집 성장에 대한 수치적 연구)

  • Park, Hyeong-Ho;Kim, Sang-Su;Jang, Hyeok-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.227-237
    • /
    • 2002
  • A numerical technique for simulating the aggregation of charged particles was presented with a Brownian dynamic simulation in the free molecular regime. The Langevin equation was used for tracking each particle making up an aggregate. A periodic boundary condition was used for calculation of the aggregation process in each cell with 500 primary particles of 16 nm in diameter. We considered the thermal force and the electrostatic force for the calculation of the particle motion. The electrostatic force on a particle in the simulation cell was considered as a sum of electrostatic forces from other particles in the original cell and its replicate cells. We assumed that the electric charges accumulated on an aggregate were located on its center of mass, and aggregates were only charged with pre-charged primary particles. The morphological shape of aggregates was described in terms of the fractal dimension. In the simulation, the fractal dimension for the uncharged aggregate was D$\_$f/ = 1.761. The fractal dimension changed slightly for the various amounts of bipolar charge. However, in case of unipolar charge, the fractal dimension decreased from 1.641 to 1.537 with the increase of the average number of charges on the particles from 0.2 to 0.3 in initial states. In the bipolar charge state, the average sizes of aggregates were larger than that of the uncharged state in the early and middle stages of aggregation process, but were almost the same as the case of the uncharged state in the final stage. On the other hand, in the unipolar charge state, the average size of aggregates and the dispersion of particle volume decreased with the increasing of the charge quantities.

Tailoring of the Chemical Resistance of Chrome Yellow Particles by Silica Coating (안료의 내약품성 향상을 위한 황연입자의 실리카 피복에 관한 연구)

  • Lee, Seewoo;Kim, Seongsoo;Kim, Dong-Uk;Wang, Lin;Choi, Heekyu
    • Applied Chemistry for Engineering
    • /
    • v.19 no.3
    • /
    • pp.310-315
    • /
    • 2008
  • Herein, we synthesized silica-coated chrome yellow particles having improved chemical resistance. The intermediate with a good dispersion stability was prepared and the chemical resistance of the final product was investigated. The effects of pH and temperature, as the main parameters influencing the formation of particles, the reduced particle size by homogenizer on the silica coating were investigated. The change in the particle morphology by temperature and pH was also studied. As the results, small and monodisperse particles were achieved at low pH and high temperature. Good silica coating was obtained when used reduced size of the particles by homogenizer. Furthermore, the sufficient silica coating by microencapsulation was obtained at 9~10 pH and the temperature above $90^{\circ}C$.

Microstructure and Properties of Ni-SiC Composite Coating Layers Formed using Nano-sized SiC Particles (SiC 나노입자를 이용하여 형성한 Ni-SiC 복합도금막의 미세구조 및 특성)

  • Lee, Hong-Kee;Son, Seong-Ho;Lee, Ho-Young;Jeon, Jun-Mi
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.2
    • /
    • pp.63-69
    • /
    • 2007
  • Ni-SiC composite coating layers were formed using two kinds of SiC nano-particles by DC electrodeposition in a nickel sulfamate bath containing SiC particles. The effect of stirring rate and SiC particle type on the microstructure and properties of Ni-SiC composite coating layers were investigated. Results revealed that the trend of deposition rate is closely related to the codeposition of SiC and the deposition rate. or nickel, and the codeposition behavior of SiC can be explained by using hydrodynamic effect due to stirring. The average roughness and friction coefficient are closely related to the codeposition of SiC and SiC particle size. It was found that the Victors microhardness of the composite coating layers increased with increasing codeposition of SiC. The composite coating layers containing smaller SiC particle showed higher hardness. This can be explained by using the strengthening mechanism resulting from dispersion hardening. Anti-wear property of the composite coating layers formed using 130 nm-sized SiC nano-particles has been improved by 2,300% compared with pure electroplated-nickel layer.

Nano particle size control of Pt/C catalysts manufactured by the polyol process for fuel cell application (폴리올법으로 제조된 Pt/C 촉매의 연료전지 적용을 위한 나노 입자 크기제어)

  • Joon Heo;Hyukjun Youn;Ji-Hun Choi;Chae Lin Moon;Soon-Mok Choi
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.6
    • /
    • pp.437-442
    • /
    • 2023
  • This research aims to enhance the efficiency of Pt/C catalysts due to the limited availability and high cost of platinum in contemporary fuel cell catalysts. Nano-sized platinum particles were distributed onto a carbon-based support via the polyol process, utilizing the metal precursor H2PtCl6·6H2O. Key parameters such as pH, temperature, and RPM were carefully regulated. The findings revealed variations in the particle size, distribution, and dispersion of nano-sized Pt particles, influenced by temperature and pH. Following sodium hydroxide treatment, heat treatment procedures were systematically executed at diverse temperatures, specifically 120, 140, and 160 ℃. Notably, the thermal treatment at 140 ℃ facilitated the production of Pt/C catalysts characterized by the smallest platinum particle size, measuring at 1.49 nm. Comparative evaluations between the commercially available Pt/C catalysts and those synthesized in this study were meticulously conducted through cyclic voltammetry, X-ray diffraction (XRD), and field-emission scanning electron microscopy-energy dispersive X-ray spectroscopy (FE-SEM EDS) methodologies. The catalyst synthesized at 160 ℃ demonstrated superior electrochemical performance; however, it is imperative to underscore the necessity for further optimization studies to refine its efficacy.

Effect of Solubility of Thiamine Dilauryl Sulfate Solution through the Manufacture of the Nano Paticles on Antifungal Activity (비타민 B1 유도체 Thiamine Dilauryl Sulfate의 나노 입자 제조를 통한 수용액의 용해도에 따른 항진균 활성 평가)

  • Seo, Yong-Chang;Choi, Woon-Yong;Lee, Choon-Geun;Cho, Jeong-Sub;Yim, Tae-Bin;Jeong, Myoung-Hoon;Kim, Sung-Il;Yoon, Won-Byung;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.19 no.6
    • /
    • pp.464-471
    • /
    • 2011
  • Conventional Thiamine Dilauryl Sulfate (TDS) powder has a low stability. In order to solve this problem, this study was performed to improve the solubility of TDS. The process for enhance solubility of TDS was nano grinding mill and ultrasonic dispersion process. TDS paticle was manufactured to nano size through nano grinding mill process. The size of TDS nanoparticle was measured as average 220 nm by DLS. And The TDS nanoparticle in water solution manufactured through ultrasonic dispersion process. The TDS nanoparticle in water solution was showed the highest solubility with 40% ethanol. These results was increased the concentration of TDS from 200 ppm to 240 ppm in water solution. The TDS nanoparticle in water solution showed diameter of Colletotrichum gloeosporioides growth with smaller than about 1.56 cm compared to the TDS paticle in water solution at same concentration. Also, TDS nanoparticle in water solution showed growth inhibition activity as 59.2% with higher than about 10% compared to the TDS paticle water solution in same concentration. Finally, TDS nanoparticle in water solution was increased solubility through nano grinding mill and ultrasonic dispersion process. Also, the increase of concentration in TDS nanopaticle in water solution according to solubility enhancement lead to an result enhancement of antifungal activity. Consequently, we suggested that the TDS nanoparticle in water solution was more effective than TDS particle in water solution owing to the sub-cellular particle size, ability to persistence and targeting to cell membrane of Colletotrichum gloeosporioides. Furthermore we expected the applicating possibility with bio pesticide.

Physical Properties of Sintered Body for Coal Fly Ash-clay Slip of Varying Dispersion State (석탄회-점토계 슬립의 분산상태에 따른 소결체의 물리적 특성)

  • 강승구;이기강;김유택;김정환
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.7
    • /
    • pp.677-682
    • /
    • 2003
  • The physical properties of sintered body made from 3 kinds of slip, F (Flocculated), M (Moderate), and D (Dispersed) for coal fly ash 70-clay 30 (wt%) were studied in terms of slip states and pore size distribution of sintered bodies. The floc particle size distribution for slip F was wider than slip D and the slip F contained flocs larger than 11 $\mu\textrm{m}$. The pore size distribution of the green body of all slips ranged over 1∼4 $\mu\textrm{m}$. The pores smaller than 1 $\mu\textrm{m}$ almost disappeared during the sintering process, while the larger pore of 2.5∼3 $\mu\textrm{m}$ growed by 1 $\mu\textrm{m}$. The pore distribution for the green body of slip F became a narrow in width and high in height after sintering and the large pore limit in a slip F sintered body was 5.1 $\mu\textrm{m}$ which is smaller than that of other slip. The slip F rather flocculated was favorable over slip D well dispersed, in offering a higher compressive strength. From these results, the mechanical strength of sintered body is dependent on the pore distribution which could be controlled by dispersion state of the slips.

Preparation and Properties of Polyorganosiloxane Modified Polyurethane Dispersion (Polyorganosiloxane 변성 Polyurethane Dispersion의 제조와 그 특성)

  • Kang, Doo Whan;Yin, Yong Nan
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.46-51
    • /
    • 2010
  • Polyorganosiloxane modified polyurethane (PDMS-PU) polymers were prepared from copolymerization of ${\alpha}$,${\omega}$-hydroxypropyl terminated polyorganosiloxane with isophorone diisocyanate (IPDI), polypropylene glycol (PPG), and 2,2-bis(hydroxymethyl) propionic acid (DMPA). Hydrophobic polyorganosiloxane was introduced in polyurethane main chain as soft segment block unit. The isocyanate groups in PDMS-PU block copolymer was blocked with 2-butanon oxime and obtained PDMS-PU dispersions in water by neutralizing with triethylamine (TEA). The deblocking temperature of PDMS-PU polymer was measured from thermal analysis. The good stability of the PDMS-PU dispersion was obtained by dispersing into water. PDMS-PU prepolymers were prepared with various contents of DMPA under [NCO]/[OH] = 1.12~1.53 equivalent ratio. Increasing DMPA from 7.2, 13.4, and 18.7 mole% in preparation of PDMS-PU polymer, particle sizes were decreased from 156, 100, 65 dnm. Also contact angle and adhesive strength were measured.

Evaluation of Dispersion Characteristics for Liquefied Red Mud by Viscosity and Sediment Index (점도 및 침전지수에 의한 액상화 레드머드의 분산 특성평가)

  • Kang, Suk-Pyo;Kang, Hye-Ju
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.6
    • /
    • pp.517-525
    • /
    • 2017
  • Red mud is an industrial by-product produced during the manufacturing aluminum hydroxide ($Al(OH)_3$) and aluminum oxide($Al_2O_3$) from Bauxite ores. In Korea, approximately 2 tons of red mud in a sludge form with 50% moisture content is produced when 1ton of $Al_2O_3$ is produced through the Bayer process. In the paper, dispersion characteristics of liquefied red mud that does not require heating and grinding process for recycling were investigated through viscosity and sediment index. The results showed that the sediment index of liquefied red mud increased but viscosity of that decreased with a higher W/R ratio. Also we proposed the range of initial viscosity from 2000cP to 8000cP and target sedimentation index below 20% at elapsed time 180days for stable dispersion of liquefied red mud.

Effect of Preparation Method for Pd/C Catalysts on Pd Characterization and their Catalytic Activity (Pd/C 촉매 제조 방법에 따른 Pd 금속의 특성 및 촉매 활성)

  • Kim, Ji Sun;Hong, Seong-Soo;Kim, Jong-Hwa;Lee, Man Sig
    • Applied Chemistry for Engineering
    • /
    • v.26 no.5
    • /
    • pp.575-580
    • /
    • 2015
  • Pd/C catalysts were prepared by various preparation methods such as ion exchange, impregnation and polyol method and also characterized by nitrogen adsorption-desorption isothermal, XRD, FE-TEM and CO-chemisorption. The activities of these catalysts were tested in the hydrogenation of cyclohexene to cyclohexane. Catalytic activities of Pd/C catalysts were found to be effected by the chosen preparation methods. Pd dispersions of each Pd/C catalysts prepared by ion exchange, impregnation and polyol method were 17.55, 13.82% and 1.35%, respectively, confirmed by CO-chemisorption analysis. These were also in good agreement with the FE-TEM results. The Pd/C catalyst prepared by ion exchange method exhibits good performance with the cyclohexene conversion rate of 71% for 15 min. These results indicate that Pd/C catalyst having higher dispersion and lower particle size is in favor of hydrogenation cyclohexene and also Pd dispersion increases with the increment of catalytic activity.

Numerical Estimates of Seasonal Changes of Possible Radionuclide Dispersion at the Kori Nuclear Power Plants (고리 원자력 발전 단지 사고 발생에 따른 방사능 물질 확산 가능성의 계절적 특성 연구)

  • Kim, Ji-Seon;Lee, Soon-Hwan;Park, Kang-Won;Lee, Sung-Gwang;Choi, Se-Young;Cho, Kyu-Chan;Lee, Hyeuk-Woo
    • Journal of Environmental Science International
    • /
    • v.27 no.6
    • /
    • pp.425-436
    • /
    • 2018
  • To establish initial response scenarios for nuclear accidents around the Kori nuclear power plants, the potential for radionuclide diffusion was estimated using numerical experiments and statistical techniques. This study used the numerical model WRF (Weather Research and Forecasting) and FLEXPART (Flexible Particle dispersion model) to calculate the three-dimensional wind field and radionuclide dispersion, respectively. The wind patterns observed at Gijang, near the plants, and at meteorological sites in Busan, were reproduced and applied to estimates of seasonally averaged wind fields. The distribution of emitted radionuclides are strongly associated with characteristics of topography and synoptic wind patterns over nuclear power plants. Since the terrain around the power plants is complex, estimates of radionuclide distribution often produce unexpected results when wind data from different sites are used in statistical calculations. It is highly probable that in the summer and autumn, radionuclides move south-west, towards the downtown metropolitan area. This study has clear limitations in that it uses the seasonal wind field rather than the daily wind field.