• Title/Summary/Keyword: Particle beam therapy

Search Result 30, Processing Time 0.03 seconds

Profile and Dose Distribution for Therapeutic Heavy Ion Beams

  • Sasaki, Hitomi;Komori, Masataka;Kohno, Toshiyuki;Kanai, Tatsuaki;Hirai, Masaaki;Urakabe, Eriko;Nishio, Teiji
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.211-213
    • /
    • 2002
  • The purpose of this work is acquiring some parameters of therapeutic heavy ion beams after penetrating a thick target. The experiments were performed using a pencil-like $\^$12/C beam of about 3 mm in diameter from NIRS-HIMAC, and the data were taken at several points of the target thickness for $\^$12/C beam of 290 MeV/u and 400 MeV/u. By the simultaneous measurements using some detectors, the atomic number of each fragment particle was identified, and the beam profile, the dose distribution and the LET spectrum for each element were derived.

  • PDF

Basics of particle therapy II: relative biological effectiveness

  • Choi, Jin-Hyun;Kang, Jin-Oh
    • Radiation Oncology Journal
    • /
    • v.30 no.1
    • /
    • pp.1-13
    • /
    • 2012
  • In the previous review, the physical aspect of heavy particles, with a focus on the carbon beam was introduced. Particle beam therapy has many potential advantages for cancer treatment without increasing severe side effects in normal tissue, these kinds of radiation have different biologic characteristics and have advantages over using conventional photon beam radiation during treatment. The relative biological effectiveness (RBE) is used for many biological, clinical endpoints among different radiation types and is the only convenient way to transfer the clinical experience in radiotherapy with photons to another type of radiation therapy. However, the RBE varies dependent on the energy of the beam, the fractionation, cell types, oxygenation status, and the biological endpoint studied. Thus this review describes the concerns about RBE related to particle beam to increase interests of the Korean radiation oncologists' society.

Development of Program for Relative Biological Effectiveness (RBE) Analysis of Particle Beam Therapy

  • Chung, Yoonsun;Ahn, Sang Hee;Choi, Changhoon;Park, Sohee
    • Progress in Medical Physics
    • /
    • v.28 no.1
    • /
    • pp.11-15
    • /
    • 2017
  • Relative biological effectiveness (RBE) of particle beam needs to be evaluated at particle beam therapy centers before the clinical application of the particle beam. However, since RBE analysis is implemented manually, it is useful to have a tool that can easily and effectively handle the data of experiments to generate cell survival curve and to analyze RBE simultaneously. In this work, the development of a program for RBE analysis of particle beam therapy was presented. This RBE analysis program was developed to include two parts; fitting the cell survival curves to linear-quadratic model and calculating the RBE values at a certain endpoint using fitting results. This program was also developed to simultaneously compare and analyze the template results that stored experiment data with photon and particle beam irradiations. The results of the cell survival curve obtained by each irradiation can be analyzed by the user on a desired data after reading the template stored in the easy-to-use excel file. The analysis results include the cell survival curves with error range, which are appeared in the screen and the ${\alpha}$ and ${\beta}$ parameters of linear-quadratic model with 95% confidence intervals, RBE values, and $R^2$ values to evaluate goodness-of-fit of survival curves to model, which are stored in a text cvs file. This software can generate cell survival curve, fit to model, and calculate RBE all at once with raw experiment data, so it helps users to save time for data handling and to reduce the possibility of making error on analysis. As a coming plan, we will create a user-friendly graphical user interface to present the results more intuitively.

An Analysis on Treatment Schedule of Carbon Ion Therapy to Early Stage Lung Cancer

  • Sakata, Suoh;Miyamoto, Tadaaki;Tujii, Hirohiko
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.174-176
    • /
    • 2002
  • A total of 134 patients with stage 1 of non-small cell lung cancer treated by carbon ion beam of HIMAC NIRS were investigated for control rate and delivered dose. The delivered dose of every patient was converted to biological effective dose (BED) of LQ model using fraction number, dose per fraction and alpha beta ratio which shows the maximum correlation between BED and tumor control. The BED of every patient was classified to establish a BED response curve for control. Assuming fraction numbers, dose response curves were introduced from BED response curve. The total doses to realize several control rates were obtained for the treatment of small fraction number.

  • PDF

Monte Carlo Investigation of Dose Enhancement due to Gold Nanoparticle in Carbon-12, Helium-4, and Proton Beam Therapy

  • Sang Hee Ahn
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.114-120
    • /
    • 2022
  • Purpose: Particle beam therapy is advantageous over photon therapy. However, adequately delivering therapeutic doses to tumors near critical organs is difficult. Nanoparticle-aided radiation therapy can be used to alleviate this problem, wherein nanoparticles can passively accumulate at higher concentrations in the tumor tissue compared to the surrounding normal tissue. In this study, we investigate the dose enhancement effect due to gold nanoparticle (GNP) when Carbon-12, He-4, and proton beams are irradiated on GNP. Methods: First, monoenergetic Carbon-12 and He-4 ion beams of energy of 283.33 MeV/u and 150 MeV/u, respectively, and a proton beam of energy of 150 MeV were irradiated on a water phantom of dimensions 30 cm×30 cm×30 cm. Subsequently, the secondary-particle information generated near the Bragg peak was recorded in a phase-space (phsp) file. Second, the obtained phsp file was scaled down to a nanometer scale to irradiate GNP of diameter 50 nm located at the center of a 4 ㎛×4 ㎛×4 ㎛ water phantom. The dose enhancement ratio (DER) was calculated in intervals of 1 nm from the GNP surface. Results: The DER of GNP computed at 1 nm from the GNP surface was 4.70, 4.86, and 4.89 for Carbon-12, He-4, and proton beams, respectively; the DER decreased rapidly with increasing distance from the GNP surface. Conclusions: The results indicated that GNP can be used as radiosensitizers in particle beam therapy. Furthermore, the dose enhancement effect of the GNP absorbed by tumor cells can aid in delivering higher therapeutic doses.

Proton Beam Dosimetry Intercomparison

  • Fukumura, Akifumi;Kanai, Tatsuaki;Kanematsu, Nobuyuki;Yusa, Ken;Maruhashi, Akira;Nohtomi, Akihiro;Nishio, Teiji;Shimbo, Munefumi;Akagi, Takashi;Yanou, Toshihiro;Fukuda, Shigekazu;Hasegawa, Takashi;Kusano, Yohsuke;Masuda, Yasutaka
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.252-254
    • /
    • 2002
  • A new protocol for dosimetry in external beam radiotherapy is published by the Japan Society of Medical Physics (JSMP) in 2002. The protocol deals with proton and heavy ion beams as well as photon and electron beams, in accordance with IAEA Technical Report Series No. 398. To establish inter-institutional uniformity in proton beam dosimetry, an intercomparison program was carried out with the new protocol. The absorbed doses are measured with different cylindrical ionization chambers in a water phantom at a position of 30-mm residual range for a proton beam, that had range of 155 mm and a spread out Bragg peak (SOBP) of 60-mm width. As a result, the intercomparison showed that the use of the new protocol would improve the +/- 1.0 % (one standard deviation) and 2.7 % (maximum discrepancy) differences in absorbed doses stated by the participating institutions to +/- 0.3% and 0.9 %, respectively. The new protocol will be adopted by all of the participants.

  • PDF

Radiation Therapy against Pediatric Malignant Central Nervous System Tumors : Embryonal Tumors and Proton Beam Therapy

  • Lim, Do Hoon
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.3
    • /
    • pp.386-392
    • /
    • 2018
  • Radiation therapy is highly effective for the management of pediatric malignant central nervous system (CNS) tumors including embryonal tumors. With the increment of long-term survivors from malignant CNS tumors, the radiation-related toxicities have become a major concern and we need to improve the treatment strategies to reduce the late complications without compromising the treatment outcomes. One of such strategies is to reduce the radiation dose to craniospinal axis or radiation volume and to avoid or defer radiation therapy until after the age of three. Another strategy is using particle beam therapy such as proton beams instead of photon beams. Proton beams have distinct physiologic advantages over photon beams and greater precision in radiation delivery to the tumor while preserving the surrounding healthy tissues. In this review, I provide the treatment principles of pediatric CNS embryonal tumors and the strategic improvements of radiation therapy to reduce treatment-related late toxicities, and finally introduce the increasing availability of proton beam therapy for pediatric CNS embryonal tumors compared with photon beam therapy.

Measurement of Proton Beam Dose-Averaged Linear Energy Transfer Using a Radiochromic Film

  • Seohyeon An;Sang-il Pak;Seonghoon Jeong;Soonki Min;Tae Jeong Kim;Dongho Shin;Youngkyung Lim;Jong Hwi Jeong;Haksoo Kim;Se Byeong Lee
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.80-87
    • /
    • 2022
  • Purpose: Proton therapy has different relative biological effectiveness (RBE) compared with X-ray treatment, which is the standard in radiation therapy, and the fixed RBE value of 1.1 is widely used. However, RBE depends on a charged particle's linear energy transfer (LET); therefore, measuring LET is important. We have developed a LET measurement method using the inefficiency characteristic of an EBT3 film on a proton beam's Bragg peak (BP) region. Methods: A Gafchromic EBT3 film was used to measure the proton beam LET. It measured the dose at a 10-cm pristine BP proton beam in water to determine the quenching factor of the EBT3 film as a reference beam condition. Monte Carlo (MC) calculations of dose-averaged LET (LETd) were used to determine the quenching factor and validation. The dose-averaged LETs at the 12-, 16-, and 20-cm pristine BP proton beam in water were calculated with the quenching factor. Results: Using the passive scattering proton beam nozzle of the National Cancer Center in Korea, the LETd was measured for each beam range. The quenching factor was determined to be 26.15 with 0.3% uncertainty under the reference beam condition. The dose-averaged LETs were measured for each test beam condition. Conclusions: We developed a method for measuring the proton beam LET using an EBT3 film. This study showed that the magnitude of the quenching effect can be estimated using only one beam range, and the quenching factor determined under the reference condition can be applied to any therapeutic proton beam range.

Dose Computational Time Reduction For Monte Carlo Treatment Planning

  • Park, Chang-Hyun;Park, Dahl;Park, Dong-Hyun;Park, Sung-Yong;Shin, Kyung-Hwan;Kim, Dae-Yong;Cho, Kwan-Ho
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.116-118
    • /
    • 2002
  • It has been noted that Monte Carlo simulations are the most accurate method to calculate dose distributions in any material and geometry. Monte Carlo transport algorithms determine the absorbed dose by following the path of representative particles as they travel through the medium. Accurate Monte Carlo dose calculations rely on detailed modeling of the radiation source. We modeled the effects of beam modifiers such as collimators, blocks, wedges, etc. of our accelerator, Varian Clinac 600C/D to ensure accurate representation of the radiation source using the EGSnrc based BEAM code. These were used in the EGSnrc based DOSXYZ code for the simulation of particles transport through a voxel based Cartesian coordinate system. Because Monte Carlo methods use particle-by-particle methods to simulate a radiation transport, more particle histories yield the better representation of the actual dose. But the prohibitively long time required to get high resolution and accuracy calculations has prevented the use of Monte Carlo methods in the actual clinical spots. Our ultimate aim is to develop a Monte Carlo dose calculation system designed specifically for radiation therapy planning, which is distinguished from current dose calculation methods. The purpose of this study in the present phase was to get dose calculation results corresponding to measurements within practical time limit. We used parallel processing and some variance reduction techniques, therefore reduced the computational time, preserving a good agreement between calculations of depth dose distributions and measurements within 5% deviations.

  • PDF

Test of a Multilayer Dose-Verification Gaseous Detector with Raster-Scan-Mode Proton Beams

  • Lee, Kyong Sei;Ahn, Sung Hwan;Han, Youngyih;Hong, Byungsik;Kim, Sang Yeol;Park, Sung Keun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.5
    • /
    • pp.297-304
    • /
    • 2015
  • A multilayer gaseous detector has been developed for fast dose-verification measurements of raster-scan-mode therapeutic beams in particle therapy. The detector, which was constructed with eight thin parallel-plate ionization chambers (PPICs) and polymethyl methacrylate (PMMA) absorber plates, is closely tissue-equivalent in a beam's eye view. The gas-electron signals, collected on the strips and pad arrays of each PPIC, were amplified and processed with a continuous charge.integration mode. The detector was tested with 190-MeV raster-scan-mode beams that were provided by the Proton Therapy Facility at Samsung Medical Center, Seoul, South Korea. The detector responses of the PPICs for a 190-MeV raster-scan-mode proton beam agreed well with the dose data, measured using a 2D ionization chamber array (Octavius model, PTW). Furthermore, in this study it was confirmed that the detector simultaneously tracked the doses induced at the PPICs by the fast-oscillating beam, with a scanning speed of 2 m s-1. Thus, it is anticipated that the present detector, composed of thin PPICs and operating in charge.integration mode, will allow medical scientists to perform reliable fast dose-verification measurements for typical dynamic mode therapeutic beams.