• Title/Summary/Keyword: Particle beam

Search Result 392, Processing Time 0.039 seconds

Laser Acceleration of Electron Beams to the GeV-class Energies in Gas Jets

  • Hafz, Nasr A.M.;Jeong, Tae-Moon;Lee, Seong-Ku;Choi, Il-Woo;Pae, Ki-Hong;Kulagin, Victor V.;Sung, Jae-Hee;Yu, Tae-Jun;Cary, John R.;Ko, Do-Kyeong;Lee, Jong-Min
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.8-14
    • /
    • 2009
  • In a laser-plasma wakefield accelerator, the ponderomotive force of an ultrashort high intensity laser pulse excites a longitudinal wave or plasma bubble in a way similar to the excitation of a wake wave behind a boat as it propagates on the water surface. Electric fields inside the plasma bubble can be several orders of magnitude higher than those available in conventional RF-based particle accelerator facilities which are limited by material breakdown. Therefore, if an electron bunch is properly phase-locked with the bubble's acceleration field, it can gain relativistic energies within an extremely short distance. Here, in the bubble regime we show the generation of stable and reproducible sub GeV, and GeV-class electron beams. Supported by three-dimensional particle-in-cell simulations, our experimental results show the highest acceleration gradients produced so far. Simulations suggested that the plasma bubble elongation should be minimized in order to achieve higher electron beam energies.

Plasma Sources for Production of High Flux Particle Beams in Hyperthermal Energy Range (하이퍼써멀 에너지 영역에서 높은 플럭스 입자빔 생성을 위한 플라즈마 발생원)

  • Yoo, S.J.;Kim, S.B.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.3
    • /
    • pp.186-196
    • /
    • 2009
  • Since it is difficult to extract a high flux ion beam directly at an energy of hyperthermal range ($1{\sim}100\;eV$), especially, lower than 50 eV, the ions should be neutralized into neutral particles and extracted as a neutral beam. A plasma source required to generate and efficiently transport high flux hyperthermal neutral beams should be easily scaled up and produce a high ion density (${\ge}10^{11}\;cm^{-3}$) even at a low working pressure (${\le}$ 0.3 mTorr). It is suggested that the required plasma source can be realized by Electron Cyclotron Resonance (ECR) plasmas with diverse magnetic field configurations of permanent magnets such as a planar ECR plasma source with magnetron field configuration and cylindrical one with axial magnetic fields produced by permanent magnet arrays around chamber wall. In both case of the ECR sources, the electron confinement is based on the simple mirror field structure and efficiently enhanced by electron drifts for producing the high density plasma even at the low pressure.

Evaluation of Scatter Reduction Effect of the Aft-Multiple-Slit (AMS) System Using MC Simulation (MC 시뮬레이션을 이용한 Aft-Multiple-Silt 시스템의 산란선 제거 효과 평가)

  • Chang, Jin-A;Suh, Tae-Suk;Jang, Doh-Yun;Jang, Hong-Seok;Kim, Si-Yong
    • Radiation Oncology Journal
    • /
    • v.28 no.4
    • /
    • pp.224-230
    • /
    • 2010
  • Purpose: We designed the aft-multiple-slit (AMS) system to reduce scatter in cone-beam computed tomography (CBCT). As a preliminary study, we performed a Monte Carlo N-Particle Transport Code (MCNP) simulation to verify the effectiveness of this system. Materials and Methods: The MCNPX code was used to build the AMS geometry. An AMS is an equi-angled arc to consider beam divergence. The scatter-reduced projection images were compared with the primary images only and the primary plus scatter radiation images with and without AMS to evaluate the effectiveness of scatter reduction. To obtain the full 2 dimensional (2D) projection image, the whole AMS system was moved to obtain closed septa of the AMS after the first image acquisition. Results: The primary radiation with and without AMS is identical to all the slit widths, but the profiles of the primary plus scattered radiation varied according to the slit widths in the 2D projection image. The average scatter reduction factors were 29%, 15%, 9%, and 8% when the slit widths were 5 mm, 10 mm, 15 mm, and 20 mm, respectively. Conclusion: We have evaluated the scatter reduction effect of the AMS in CBCT imaging using the Monte Carlo (MC) simulations. A preliminary study based on the MCNP simulations showed a mount of scatter reduction with the proposed system.

Experimental Verification on the Detectability of Surface Flaws at Fillet Weld Hills by Ultrasonic Method (초음파에 의한 필렛 용접힐부의 표면결함 검출능에 관한 실험적 검증)

  • 박익근;이철구
    • Journal of Welding and Joining
    • /
    • v.18 no.1
    • /
    • pp.46-51
    • /
    • 2000
  • Ultrasonic nondestructive evaluation (UNDE) technique is commonly used for detecting inner defects in the materials. Recently, new methods are trying to apply for detecting surface and subsurface flaws using Rayleigh wave or creeping wave. These techniques, however, have following problems. Echo amplitude is remarkably affected by the surface conditions and discrimination of echo pattern is usually difficult because shear wave propagate in the material at the same time. We can apply surface SH-wave(which is horizontally polarized shear wave traveling along near surface layer) technique to detect surface flaws. In this paper, directivity, distance amplitude characteristics and detectability of surface flaws at fillet weld hills of the 5 MHz and 2 MHz surface flaws at fillet weld hills of the 5 MHz and 2 MHz surface Sh-wave are experimentally investigated. As a result of the study, it was found out that these techniques are valuable for the detection of fatigue cracks at fillet weld heels which can not be detected by other ultrasonic techniques such as angle beam technique and which are inaccessible for non-destructive testings e.g. MT(magnetic particle testing) or PT(liquid penetrant testing).

  • PDF

An Experimental Study of the Flow Characteristics around 2D Multi-Cylinders ( I ) (2차원 다원주 주위의 유동 특성에 관한 실험적 연구 ( I ))

  • 김두홍;조철희;정우철;박찬원;나인삼
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.190-195
    • /
    • 2001
  • Flow patterns are very complex and interactive between cylinders. The patterns are turbulent and non-linear caused by various factors. In this paper, flow patterns and pressure gradient around vertical cylinders were investigated by experiment. Changing gaps between cylinders the flow patterns are measured at a fixed coming velocity. Flow patterns showed very complex and closely related to the coming velocity and cylinder space. The pressure gradient around the flow field is observed by twelve hole pitot tubes and manometer. The experiment has been conducted in circulating water channel with PIV system. That can visualize flow patterns. The laser beam was used to reflect the image from particles and recorded by CCD camera. The cylinders were spaced from ID to 5D with 0.5m/sec of incoming flow velocity. The experimental results using pitot tube showed in good agreement with results of precious by others study. The results can be applied in the understanding and design of multiple pile array structures.

  • PDF

Simulation of the Determination of NaCl Concentration in Concrete samples by the Neutron induced Prompt Gamma-ray Method

  • Kim, Hyeon-Soo
    • Journal of Environmental Science International
    • /
    • v.13 no.2
    • /
    • pp.175-180
    • /
    • 2004
  • A prompt gamma-ray neutron activation (PGNA) system was simulated by the Monte Carlo N-Particle transport code (MCNP-4A) to estimate the level at which the scattered photon fluence rate, the absolute efficiency of the HPGe-detector, the volume of the concrete sample and the $^{35}$ /Cl(n, ${\gamma}$) reaction rate in this sample contribute to the count rate in the NaCl concentration measurement. The n- ${\gamma}$ fluence rates at the ST-2 beam tube exit of the HANARO reactor were used as input data, and the GAMMA-X type HPGe detector was modeled to tally 1.1649 MeV ${\gamma}$ -rays emitted from the $^{35}$ Cl(n, ${\gamma}$) reaction in the concrete sample. For three cylindrical concrete samples of 13.8, 46.8 and 157.1 ㎤ volumes, respectively, the relations between the NaCl weight fractions of 0.1, 1, 2 and 5 % in each of the concrete samples and the 1.1 649 MeV pulses created in the HPGe detector model were studied. As a result, it was found that the count rate at the same NaCl concentration nearly depends on the volume of the samples in a simulated condition of the same NaCl concentration samples, and that the linearities of the NaCl concentration calibration curves were reasonable in the narrow range of the NaCl weight fraction.

RECENT PROGRESS ON LASER DRIVEN ACCELERATORS AND APPLICATIONS

  • LEEMANS W. P.;ESAREY E.;GEDDES C.G.R.;SCHROEDER C. B.;TOTH CS.
    • Nuclear Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.447-456
    • /
    • 2005
  • Laser driven accelerators promise to provide an alternative to conventional accelerator technology. They rely on the excitation of large amplitude density waves in a plasma by the photon pressure of an intense laser. The density oscillations in which electrons and ions are separated, result in extremely large longitudinal electric fields that can be several orders of magnitude larger than those that are used in today's radio-frequency accelerators. Whereas this principle had been demonstrated experimentally for nearly two decades, it was not until 2004 that the production of high quality electron beams around 100 MeV was demonstrated. Analysis, aided by particle-in-cell simulations, as well as experiments with various plasma lengths and densities, indicate that tailoring the length of the accelerator, together with loading of the accelerating structure with beam, are the keys to production of mono-energetic electron beams. Increasing the energy towards a GeV and beyond will require reducing the plasma density and design criteria are discussed for an optimized accelerator module. The current progress and future directions are summarized through comparison with conventional accelerators, highlighting the unique short and long term prospects for intense radiation sources and high energy accelerators based on laser-drivenplasma accelerators.

Simulation of a Electron Beam-produced Plasma (전자빔에 의해 생성된 플라즈마에 관한 시뮬레이션 연구)

  • Bae, Hyo-Won;Shim, Seung-Bo;Hwang, Seok-Won;Song, In-Cheol;Lee, Hae June;Lee, Ho-Jun;Park, Chung-Hoo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1431_1432
    • /
    • 2009
  • 본 연구에서는 전자빔에 의해 생성되는 저온 플라즈마의 특성을 시뮬레이션을 통해 알아보았다. 전자빔 소스에서 전자를 생성하여 가속 전압을 인가하여 챔버로 보내고, 챔버 속의 Argon 중성 기체와 전자가 충돌하여 2차 방전을 일으킴으로써 저온 플라즈마가 생성된다. 이 때 중성기체의 압력과 가속전압의 변화에 따라서 플라즈마 밀도와 온도가 변하는데, 어떠한 특성을 가지는지 알아보기 위해 Particle-In-Cell(PIC) 시뮬레이션을 이용하였다. 챔버 내부에서 전자빔과 중성기체에 의한 변화를 관측했고, 이 때 전자빔 소스에서 Negative Acceleration Voltage는 10V~40V, 챔버 내부의 Argon 중성 기체의 압력은 1mTorr~20mTorr 조건하에서 시뮬레이션을 수행하였다. Electron Energy Distribution function (EEDF)을 관찰한 결과, 가속전압이 높을수록 낮은 에너지를 가지는 전자의 수가 증가하여 전자 밀도는 증가하며, 가스 압력이 높을수록 EEDF의 기울기가 커지면서 전자온도는 감소함을 알 수 있었다.

  • PDF

A novel WOA-based structural damage identification using weighted modal data and flexibility assurance criterion

  • Chen, Zexiang;Yu, Ling
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.445-454
    • /
    • 2020
  • Structural damage identification (SDI) is a crucial step in structural health monitoring. However, some of the existing SDI methods cannot provide enough identification accuracy and efficiency in practice. A novel whale optimization algorithm (WOA) based method is proposed for SDI by weighting modal data and flexibility assurance criterion in this study. At first, the SDI problem is mathematically converted into a constrained optimization problem. Unlike traditional objective function defined using frequencies and mode shapes, a new objective function on the SDI problem is formulated by weighting both modal data and flexibility assurance criterion. Then, the WOA method, due to its good performance of fast convergence and global searching ability, is adopted to provide an accurate solution to the SDI problem, different predator mechanisms are formulated and their probability thresholds are selected. Finally, the performance of the proposed method is assessed by numerical simulations on a simply-supported beam and a 31-bar truss structures. For the given multiple structural damage conditions under environmental noises, the WOA-based SDI method can effectively locate structural damages and accurately estimate severities of damages. Compared with other optimization methods, such as particle swarm optimization and dragonfly algorithm, the proposed WOA-based method outperforms in accuracy and efficiency, which can provide a more effective and potential tool for the SDI problem.

Development of Polymeric Water Absorbent Film(PWAF) for the Collection of Size-classified Fog Droplets

  • Ma, Chang-Jin;Mikilo-kasahara;Park, Kum-Chan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.E1
    • /
    • pp.17-24
    • /
    • 2001
  • For the purpose of collecting fog droplets as a function of size a new sampling method was developed in this study. Formation of 100$\pm$10㎛ thickness of polymeric water absorbent film (PWAF) on a nuclepore filter could be successfully realized. Also applicability of particle induced X-ray emission (PIXE) method to the chemical analysis of size-segregated fog droplets collected on PWAF was examined experimentally with synthetic fog droplets generated from a nebulizer. Absorption capacity of S-PAAS polymeric water absorbent shows marked decreases in the range less than 1 wt% and slight decrease between 1 and 3.5 wt% of every salt concentration. Dependency of absorption capacity on pH shows the maximum at pH 7. No apparent peak which can influence the quantitative analysis of elements dissolved and suspended in fog droplets was found at PIXE spectrum of PWAF blank. PWAF kept the original shape without rupture under the PIXE analytical conditions of beam intensity for 10 to 60 nA and irradiation time of 4∼5 min. It should be said that the proposed new technique in the work is helpful to get more detailed information of fog droplets, to clarify the fog formation processes, and to develop a model of acid deposition process.