DOI QR코드

DOI QR Code

Evaluation of Scatter Reduction Effect of the Aft-Multiple-Slit (AMS) System Using MC Simulation

MC 시뮬레이션을 이용한 Aft-Multiple-Silt 시스템의 산란선 제거 효과 평가

  • Chang, Jin-A (Department of Biomedical Engineering, The Catholic University of Korea School of Medicine) ;
  • Suh, Tae-Suk (Department of Biomedical Engineering, The Catholic University of Korea School of Medicine) ;
  • Jang, Doh-Yun (Department of Nuclear Engineering, Hanyang University) ;
  • Jang, Hong-Seok (Department of Radiation Oncology, Seoul St. Mary's Hospital, The Catholic University of Korea School of Medicine) ;
  • Kim, Si-Yong (Department of Radiation Oncology, Mayo Clinic)
  • 장지나 (가톨릭대학교 의과대학 의공학교실) ;
  • 서태석 (가톨릭대학교 의과대학 의공학교실) ;
  • 장도윤 (한양대학교 원자력공학과) ;
  • 장홍석 (가톨릭대학교 서울성모병원 방사선종양학과) ;
  • 김시용 (Mayo Clinic 방사선종양학회)
  • Received : 2010.06.04
  • Accepted : 2010.10.20
  • Published : 2010.12.31

Abstract

Purpose: We designed the aft-multiple-slit (AMS) system to reduce scatter in cone-beam computed tomography (CBCT). As a preliminary study, we performed a Monte Carlo N-Particle Transport Code (MCNP) simulation to verify the effectiveness of this system. Materials and Methods: The MCNPX code was used to build the AMS geometry. An AMS is an equi-angled arc to consider beam divergence. The scatter-reduced projection images were compared with the primary images only and the primary plus scatter radiation images with and without AMS to evaluate the effectiveness of scatter reduction. To obtain the full 2 dimensional (2D) projection image, the whole AMS system was moved to obtain closed septa of the AMS after the first image acquisition. Results: The primary radiation with and without AMS is identical to all the slit widths, but the profiles of the primary plus scattered radiation varied according to the slit widths in the 2D projection image. The average scatter reduction factors were 29%, 15%, 9%, and 8% when the slit widths were 5 mm, 10 mm, 15 mm, and 20 mm, respectively. Conclusion: We have evaluated the scatter reduction effect of the AMS in CBCT imaging using the Monte Carlo (MC) simulations. A preliminary study based on the MCNP simulations showed a mount of scatter reduction with the proposed system.

목적: 본 연구에서는 콘빔 CT에서 산란선 제거를 위한 aft-multple-slit (AMS) 시스템을 설계하였다. 예비 연구로서 본 시스템의 효용성을 검증하기 위해 MC 시뮬레이션을 수행하였다. 대상 및 방법: 가상 시뮬레이션은 산란선과 산란선+일차선을 계산할 수 있는 MCNPX의 radiography tally 5를 이용하였다. AMS는 빔의 발산성을 고려한 각이 동일한 아크 형태이고, 길이 방향에서의 산란선을 막는다. AMS의 효용성을 위한 평가는 AMS를 사용하지 않았을 때의 일차선과 산란선을 비교함으로써 수행되었다. 2D projection 영상을 얻기 위해 전체의 AMS는 한번의 캔트리 회전 후 AMS에 의해 가려진 부분의 영상 획득을 위해 다시 한 번 회전하는 구조이다. 결과: 일차선의 2D projection 영상은 모든 AMS의 폭에서 그리고 AMS를 사용하지 않았을 때에도 동일하였으나 일차선+산란선의 2D projection 영상은 slit의 폭에 따라 결과가 변했다. Slit의 폭을 5 mm, 10 mm, 15 mm, 20 mm로 하였을 때 평균 산란성 제거율은 29%, 15%, 9%, 8%였다. 결론: 본 연구에서는 AMS를 이용한 콘빔 CT의 산란선 제거 효과를 평가하였다. MC 시뮬레이션을 이용한 본 시스템의 사전 연구에서는 상당한 산란선 제거 효과를 보여주었다.

Keywords

References

  1. Jaffray DA, Siewerdsen JH, Wong JW, Martinez AA. Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int J Radiat Oncol Biol Phys 2002;53 1337-1349 https://doi.org/10.1016/S0360-3016(02)02884-5
  2. Hawkins MA, Brock KK, Eccles C, Moseley D, Jaffray D, Dawson LA. Assessment of residual error in liver position using kV cone-beam computed tomography for liver cancer high-precision radiation therapy. Int J Radiat Oncol Biol Phys 2006;66:610-619 https://doi.org/10.1016/j.ijrobp.2006.03.026
  3. Thilmann C, Nill S, Tucking T, et al. Correction of patient positioning errors based on in-line cone beam CTs: clinical implementation and first experiences. Radiat Oncol 2006;1:16 https://doi.org/10.1186/1748-717X-1-16
  4. Langen KM, Meeks SL, Poole DO, et al. The use of megavoltage CT (MVCT) images for dose recomputations. Phys Med Bol 2005;50:4259-4276 https://doi.org/10.1088/0031-9155/50/18/002
  5. Samant SS, Xia J, Muyan-Ozcelik P, Owens JD. High performance computing for deformable image registration: towards a new paradigm in adaptive radiotherapy. Med Phys 2008;35:3546-3553 https://doi.org/10.1118/1.2948318
  6. Yang Y, Schreibmann E, Li T, Wang C, Xing L. Evaluation of on-board kV cone beam CT (CBCT)-based dose calculation. Phys Med Biol 2007;52:685-705 https://doi.org/10.1088/0031-9155/52/3/011
  7. Morin O, Chen J, Aubin M, et al. Dose calculation using megavoltage cone-beam CT. Int J Radiat Oncol Biol Phys 2007;67:1201-1210 https://doi.org/10.1016/j.ijrobp.2006.10.048
  8. Tkaczyk JE, Du Y, Walter D, Wu X, Li J, Toth T. Simulation of CT dose and contrast-to-noise as a function of bowtie shape. Proc SPIE 2004;5368:403-410
  9. Mail N, Moseley DJ, Siewerdsen JH, Jaffray DA. The influence of bowtie filtration on cone-beam CT image quality. Med Phys 2009;36:22-32 https://doi.org/10.1118/1.3017470
  10. Ning R, Tang X, Conover D. X-ray scatter correction algorithm lor cone beam CT imaging. Med Phys 2004;31:1195-1202 https://doi.org/10.1118/1.1711475
  11. Siewerdsen JH, Daly MJ, Bakhtiar B, et al. A simple, direct method for x-ray scatter estimation and correction in digital radiography and cone-beam CT. Med Phys 2006;33 187-197 https://doi.org/10.1118/1.2148916
  12. Shaw CC, Wang T, Gur D. Effectiveness of antiscatter grids in digital radiography. A phantom study. Invest Radiol 1994;29:636-642 https://doi.org/10.1097/00004424-199406000-00007
  13. Neitzel U. Grids or air gaps for scatter reduction in digital radiography: a model calculation. Med Phys 1992;19:475-481 https://doi.org/10.1118/1.596836
  14. Lui X, Shaw CC. Effects of anti-scatter grid on measurement of detector characteristics. Med Phys 2002;29:1342
  15. Jing Z, Huda W, Walker JK. Scattered radiation in scanning slot mammography. Med Phys 1998;25:1111-1117 https://doi.org/10.1118/1.598433
  16. Mainprize JG, Ford NL, Yin S, Tumer T, Yaffe MJ. A slot-scanned photodiode-array/CCD hybrid detector for digital mammography. Med Phys 2002;29:214-225 https://doi.org/10.1118/1.1446108
  17. Samei E, Saunders RS, Lo JY, et al. Fundamental imaging characteristics of a slot-scan digital chest radiographic system. Med Phys 2004;31:2687-2698 https://doi.org/10.1118/1.1783531
  18. Feldkamp LA, Davis LC, Kress JW. Practical cone-beam algorithm. J Opt Soc Am 1984;1:612-619 https://doi.org/10.1364/JOSAA.1.000612