• Title/Summary/Keyword: Particle Visualization

Search Result 395, Processing Time 0.023 seconds

Study on visualization of water mixing flows in a digester equipped with a vertical impeller by using radiotracers

  • Jung, Sung-Hee;Moon, Jinho;Park, Jang-Guen;Lim, Jae Cheong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.170-177
    • /
    • 2020
  • A mixer with a new concept design has been adapted into water treatment plants. It reportedly cuts down the energy consumption of the mixer by the new mixer, which moves vertically and creates internal flows toward its bottom. However, no experimental observations have been made on the internal flow caused by a vertical impeller. In this study, a radiotracer experiment, radioactive particle tracking (RPT) technique, and particle image velocimetry (PIV) were carried out to visualize the flow in the mixer, and compared to each other. The results show that the flow patterns from these techniques are very similar to each other, and the performance of the mixer was good enough to mix the inner materials.

Combustion Fluid Field Visualization Using PIV and Related Problems (연소 유동장의 PIV 가시화 측정과 제반 문제들)

  • Kim, Young-Han;Yoon, Young-Bin;Jeung, In-Seuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.4
    • /
    • pp.504-511
    • /
    • 2000
  • PIV(Particle Image Velocimetry) is a recently developed technique for visualizing the fluid velocity fields. Because it has several advantages over the LDV(Laser Doppler Velocimetry), it became one of the most popular diagnostic tools in spite of its short history. However, its application to combustion is restricted by some problems such as flame illumination, scattered light refraction, particle density variation due to heat release, the combined effect of abrupt change in particle density and fluid velocity on flame contour, and thermophoresis which is particle lagging due to temperature gradient. These problems are expected to be originated from the non-continuous characteristics of flames and the limitations of particle dynamics. In the present study, these problems were considered for the visualization of the instantaneous coaxial hydrogen diffusion flame. And the instantaneous flame contour was detected using particle density difference. The visualized diffusion flame velocity field shows its turbulent and meandering nature. It was also observed that the flame is located inside the outer shear layer and flame geometry is largely influenced by the vorticity.

Flow Visualization around the Endothelial Cell Model by the PIV System (입자영상유속계를 이용한 혈관내피세포 모형 주위의 유동가시화)

  • Roh, Hyung-Woon;Suh, Sang-Ho;Yoo, Sang-Sin
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.381-384
    • /
    • 2000
  • Relationships between biochemical phenomena and hemodynamics on human endothelial cells are very important to study the mechanism of atherosclerotic formation and development. The objective of this study is to investigate the flow phenomena around the endothelial cell model by the PIV experiment. The microscopic images of endothelial cells were acquired by a CCD camera to fabricate the shape of endothelial cell. The cell models were fabricated by using a photoforming process. Two consecutive particle images were captured by the CCD camera for the image processing. Conifer powder as the tracing particles was added to water to visualize the flow field. The cross-correlation method was applied fer the image processing of the flow visualization. Pressure and wall shear stress variations on the surfaces of the endothelial cells were calculated to investigate the effects of hemodynamic forces on the morphological changes.

  • PDF

Flow Survey around Two-Dimensional Circular Cylinder using PIV Technique (PIV를 사용한 2차원 원형 실린더 주위의 유동해석)

  • 박건선;곽영기
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.1-7
    • /
    • 2004
  • Flaw visualization and velocity field measurement methods have practical applications in the various fluid engineering fields, such as mechanics, ships, and heat fluids. In this study, the basic principles and theoretical methods are used to establish an application technique of Particle Imae Velocimetry(abbreviated to PIV below). Accordingly, the measured results of velocity field distribution of a section inside the Circulating Water Channel (abbreviated to CWC below) are computed using the PIV is presented. The uniformity of velocity distribution of the section in CWC is confirmed, by comparing this PIV data with the existing current meter data. Also, in order to measure the flaw fields of surroundings of 2-dimensional cylinder in the CWC, the flaw visualization technique using the PIV is applied.

Flow Visualization and PIV Measurement of Multiphase Flow in Highty Viscous Liquid (고점성 유체 내부에서의 다상유동장 가시화 및 PIV 측정)

  • Kim, Hyun-Dong;Ryu, Seung-Gyu;Kim, Kyung-Chun
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.48-54
    • /
    • 2006
  • A visualization study of flow characteristics in a mixer using multi-nozzle bubbling was performed. The mixer is filled with liquid glycerin (dynamic viscosity = $1000mPa{\cdot}$ s at $25^{\circ}C$) and convective mixing is induced by air bubbles generated from 9 orifices installed on the bottom of the mixer. To visualize the flow field, PIV (Particle Image Velocimetry) system consisting of 532nm Nd:YAG laser, $2k\times2k$ CCD camera and synchronizer is adopted. The bubbles generated with uniform size and frequency form bubble stream, and bubble streams rise vertically without interaction between bubble streams. Mixing efficiency is affected by the height of bubbler and the effective height of bubbler is 20mm from the bottom of the mixer.

  • PDF

A Review on Swirling Flow by Using Flow Visualization Techniques in the Circular Tubes (원형관 내에서 유동가시화 기법을 이용한 선회유동에 관한 연구고찰)

  • Chang, Tae-Hyun;Doh, Deog-Hee;Lee, Kwoon-Soo
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.3
    • /
    • pp.12-21
    • /
    • 2010
  • Swirling flows are found in very wide range of applications, for examples, cyclone separators, spraying machines, heat exchangers and jet pumps, ect. Relatively, little work has been done on the swirl flow using flow visualization techniques. This study deals with many visualization techniques to study on swirling flow. These techniques are related to oil films methods, smoke, dye liquids, liquid crystal, stroboscope light, smoke wire, white light, naphthalene sublimation, LDV(lase doppler Velocimetry) and PIV(particle image velocimetry). The present work has handled single, annular, carved tube, swirl expansion and swirl wake using several visualization methods in the vertical and horizontal circular tube.

(Visualization Tool of searching process of Particle Swarm Optimization) (PSO(Particle Swarm Optinization)탐색과정의 가시화 툴)

  • 유명련;김현철
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.4
    • /
    • pp.35-41
    • /
    • 2002
  • To solve the large scale optimization problem approximately, various approaches have been introduced. They are mainly based on recent research advancement of simulations for evolutions, flocking, annealing, and interactions among organisms on artificial environments. The typical ones are simulated annealing(SA), artificial neural network(ANN), genetic algorithms(GA), tabu search(TS), etc. Recently the particle swarm optimization(PSO) has been introduced. The PSO simulates the process of birds flocking or fish schooling for food, as with the information of each agent Is share by other agents. The PSO technique has been applied to various optimization problems of which variables are continuous. However, there are seldom trials for visualization of searching process. This paper proposes a new visualization tool for searching process particle swarm optimization(PSO) algorithm. The proposed tool is effective for understanding the searching process of PSO method and educational for students.

  • PDF

Fast Garment Drape Simulation Using Geometrically Constrained Particle System

  • Kim, Sungmin;Park, Chang-Kyu
    • Fibers and Polymers
    • /
    • v.4 no.4
    • /
    • pp.169-175
    • /
    • 2003
  • A simulation system for versatile garment drape has been developed. Using this system, the shape of a garment can be simulated in consideration of fabric physical properties as well as the interaction between fabrics and other objects. Each fabric piece in a garment is modeled using a geometrically constrained particle system and its behavior is calculated from an implicit numerical integration algorithm in a relatively short time. The system consists of three modules including a preprocessor for the preparation of fabric patterns and external objects, a postprocessor for the results of three-dimensional visualization, and a drape simulation engine. It can be used for the design process of textile goods, garments, furniture, or upholsteries.

Study on Continuous-Flow Particle Separation in a Microchannel using Dielectrophoresis (마이크로 채널 내에서의 유전영동을 이용한 입자의 연속적인 분리에 대한 연구)

  • Ryu, Jeong-Eun;Kang, Kwan-Hyoung
    • Journal of the Korean Society of Visualization
    • /
    • v.7 no.2
    • /
    • pp.56-63
    • /
    • 2010
  • In this work, a dielectrophoresis-based particle-separation device is developed which is to be used to continuously separate particles in microchannels. We fabricated the particle-separation device with combining the benefits of electrode-based DEP and insulator-based DEP. The DEP forces are generated by an array of electrodes located in both sidewalls of a main channel. According to the magnitude and frequency of electrical signals, particles with different dielectric properties experience different DEP forces, and therefore, continuously move along different streamlines in the main flow channel without need of pre-focusing process. Based on this mechanism, we examined the performance of the device by controlling the trajectory of polystyrene particles. This device is applicable to the investigation of dielectric properties of biological cells as well as the continuous separation of biological cells.

Molten Metal Flow Analysis of Casting Process Using SPH Method (SPH 기법을 이용한 주조공정 용탕 주입 유동 해석)

  • Park, Byung Lae;Lee, Sang Wook
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.1
    • /
    • pp.54-60
    • /
    • 2018
  • It is important to develop more efficient and productive casting processes for an automated high precision molten-metal casting system. Detailed analysis of molten-metal flow in the casting process by the numerical approach will help to optimize the control of a ladle. In this study, the smoothed particle hydrodynamics method was applied to analyze casting flow characteristics with different tilting angular speed and initial molten-metal level. The smoothed particle hydrodynamics technique has advantages to easily handle non-linear free surface behavior with the absence of a computational mesh. We found that tilting angular speed has relatively greater effect on the casting flowrate and that the effect of the initial molten-metal level is only minor. Further extensive study will be necessary to find an optimal condition for high efficient casting system.