• Title/Summary/Keyword: Particle Transport

Search Result 512, Processing Time 0.02 seconds

Wind-sand tunnel experiment on the windblown sand transport and sedimentation over a two-dimensional sinusoidal hill

  • Lorenzo Raffaele;Gertjan Glabeke;Jeroen van Beeck
    • Wind and Structures
    • /
    • v.36 no.2
    • /
    • pp.75-90
    • /
    • 2023
  • Turbulent wind flow over hilly terrains has been extensively investigated in the scientific literature and main findings have been included in technical standards. In particular, turbulent wind flow over nominally two-dimensional hills is often adopted as a benchmark to investigate wind turbine siting, estimate wind loading, and dispersion of particles transported by the wind, such as atmospheric pollutants, wind-driven rain, windblown snow. Windblown sand transport affects human-built structures and natural ecosystems in sandy desert and coastal regions, such as transport infrastructures and coastal sand dunes. Windblown sand transport taking place around any kind of obstacle is rarely in equilibrium conditions. As a result, the modelling of windblown sand transport over complex orographies is fundamental, even if seldomly investigated. In this study, the authors present a wind-sand tunnel test campaign carried out on a nominally two-dimensional sinusoidal hill. A first test is carried out on a flat sand fetch without any obstacle to assess sand transport in open field conditions. Then, a second test is carried out on the hill model to assess the sand flux overcoming the hill and the morphodynamic evolution of the sand sedimenting over its upwind slope. Finally, obtained results are condensed into a dimensionless parameter describing its sedimentation capability and compared with values resulting from other nominally two-dimensional obstacles from the literature.

A Study on the Bed-Load Transport Rate (소류사량에 관한 연구)

  • Kang, Ju-Bok;Jeong, Yeon-Tae;Kim, Won-Gyu
    • Water for future
    • /
    • v.22 no.2
    • /
    • pp.191-200
    • /
    • 1989
  • A method is presented which enables the computation of the bed-load transport rate as the product of particle velocity and bed-load Concentration. In this study, it is assumed that particle velocity is proportinal to the flow velocity near the particle and the apperance frequency of the component of the fluctuating velocity of turbulent flow close to bed is normally distributed, and the particle velocity is expressed by mean flow velocity near the particle and the function of bed shear stress. Engelund formula, which is checked indirectly to be proper to use in this study, is employed to estimate the effective shear velocity. And the dffective bed shear stress acting on particle is obtained by that shear velocity. Ashida-Michiue's formula is used to get the concentration of bed-load. Experimental data for bed-load is compared with the results of other studies and the transport fornula suggested in this paper gives results which are in good accordance with other's experimental data excepting the results obtained the case of comparatively small bed shear stress.

  • PDF

Effect of Morphology on Electron Transport in Dye-Sensitized Nanostructured $TiO_2$ Films

  • Park, Nam-Gyu;Jao van de Lagemaat;Arthur J. Frank
    • Journal of Photoscience
    • /
    • v.10 no.2
    • /
    • pp.199-202
    • /
    • 2003
  • The relationship between the morphology of nanostructured TiO$_2$ films and the photo-injected electron transport has been investigated using intensity-modulated photocurrent spectroscopy (IMPS). For this purpose, three different TiO$_2$ films with 5 ${\mu}{\textrm}{m}$ thickness are prepared: The rutile TiO$_2$ film with 500 nm-sized cluster-like spherical bundles composed of the individual needles (Tl), the rutile TiO$_2$ film made up of non-oriented, homogeneously distributed rod-shaped particles having a dimension of approximately 20${\times}$80 nm (T2), and the anatase TiO$_2$ film with 20 nm-sized spherically shaped particles (T3). Cross sectional scanning electron micrographs show that all of the TiO$_2$films have a quite different particle packing density: poorly packed Tl film, loosely packed T2 film and densely packed T3 film. The electron transport is found to be significantly influenced by film morphology. The effective electron diffusion coefficient D$_{eff}$ derived from the IMPS time constant is an order of magnitude lower for T2 than for T3, but the D$_{eff}$ for the Tl sample is much lower than T2. These differences in the rate of electron transport are ascribed to differences in the extent of interparticle connectivity associated with the particle packing density.ity.

  • PDF

A Study on Design of Transport Container for Radio-activated Targets (방사화 표적물질 운반용기 설계 연구)

  • Hey Min Park;Tae Young Kim;Hae Young Kim;Yang Soo Song;Un Jang Lee;Won-Je Cho;Myeong Hwan Jeong
    • Journal of Radiation Industry
    • /
    • v.17 no.2
    • /
    • pp.191-197
    • /
    • 2023
  • Abstract KOMAC(Korea Multi-Purpose Accelerator Complex, KAERI) has been operating a 100 MeV proton accelerator and is going to produce 68Ga isotope which is useful for diagnosis of cancer. So, it is necessary to develop a transport container for radio-activated targets. In this study, we carry out shielding analysis and structural analysis for the radio-activated target transport container using simulation programs. According to the Type A standard, the transport container includes an inner container and an overpack container. The main material of inner container is lead, and the shape is cylindrical with diameter of 152mm, height of 142mm and weight about 29 kg. It is planned to verify the possibility of field application through production of the transport container prototype in the future.

Analysis of Solids in Runoff to Prevent Solids Pollution (오염저감 기법개발을 위한 유출수내 고형물질 특성 규명)

  • Lee, Young-Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.1
    • /
    • pp.22-28
    • /
    • 2004
  • The fate and transport mechanism of pollutants which have affinities to particles, such as trace metals and some petroleum product based compounds, can be effectively explained by the movement of sediment. The sediment release from lands to adjacent water bodies due to rainfall events was investigated in an effort to predict the total suspended solids (TSS) concentrations in runoff. The contribution of sediment from land origin to the river TSS can be better understood by the relationship between TSS concentration and particle size in runoff. The sieve analysis was used to determine the particle size distribution and these results were incorporated into statistical models. The critical size of particles was set to $74{\mu}m$ which contributes to the river TSS concentration since fine particles (wash load) of the sediment in the runoff play the key role in constituting TSS in a water column of the river. Empirical relationships were developed to predict TSS in runoff from the percentage of the critical particle size and were proven statistically to be valid.

Numerical Simulation for Dispersion of Anthropogenic Pollutant in Northern Masan Bay using Particle Tracking Model (입자추적모델을 이용한 마산만 북부 해역에서의 육상오염물질 확산 수치모의)

  • KIM, Jin-Ho;JUNG, Woo-Sung;HONG, Sok-Jin;LEE, Won-Chan;CHUNG, Yong-Hyun;KIM, Dong-Myung
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.4
    • /
    • pp.1143-1151
    • /
    • 2016
  • To study the dispersion process and residence time of anthropogenic pollutant in Masan bay, a three-dimensional hydrodynamic model coupled to a particle tracking model, EFDC, is applied. Particle tracking model simulated the instantaneous release of particles emulating discharge from river and wastewater treatment plant to show the behaviour of pollutant in terms of water circulation and water exchange. Modelled outcomes for water circulation were in good agreement with tidal elevation and current data. The results of particle tracking model show that over half of particles released from northern Masan bay transport to out of area while the particles from Dukdong wastewater treatment plant transport to northern area. This meant pollution source from inside and outside of the northern area can affect water quality of northern Masan bay.

Predicting the Transport Velocity by the Correlation on Particle Entrainment Rate in the Gas Fluidized-bed (기체 유동층에서 입자 비산속도 상관식에 의한 수송속도의 예측)

  • Won, Yoo Sube;Khurram, Muhammad Shahzad;Jeong, A Reum;Choi, Jeong-Hoo;Ryu, Ho-Jung
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.638-645
    • /
    • 2017
  • A model for predicting the transport velocity was proposed using the correlation of the particle entrainment rate in the gas fluidized bed. The emptying time method was simulated using correlations of Choi et al. and Li and Kato. In order to exclude the influence of the unit of the gas velocity, the dimensionless velocity obtained by dividing the gas velocity by the terminal velocity was used as the value of the x-axis. The inverse of the particle entrainment rate was used as the value of the y-axis. When increasing the gas velocity, the non-dimensional velocity, at which the decreasing slope of the y-value is 0.398 [$m^2s/kg$] in absolute value, was considered as the transport velocity. The transport velocity predicted by the model was in good agreement even at high temperature and high pressure.

SENSITIVITY ANALYSIS TO EVALUATE THE TRANSPORT PROPERTIES OF CdZnTe DETECTORS USING ALPHA PARTICLES AND LOW-ENERGY GAMMA-RAYS

  • Kim, Kyung-O;Ahn, Woo-Sang;Kwon, Tae-Je;Kim, Soon-Young;Kim, Jong-Kyung;Ha, Jang-Ho
    • Nuclear Engineering and Technology
    • /
    • v.43 no.6
    • /
    • pp.567-572
    • /
    • 2011
  • A sensitivity analysis of the methods used to evaluate the transport properties of a CdZnTe detector was performed using two different radiations (${\alpha}$ particle and gamma-ray) emitted from an $^{241}Am$ source. The mobility-lifetime products of the electron-hole pair in a planar CZT detector ($5{\times}5{\times}2\;mm^3$) were determined by fitting the peak position as a function of biased voltage data to the Hecht equation. To verify the accuracy of these products derived from ${\alpha}$ particles and low-energy gamma-rays, an energy spectrum considering the transport property of the CZT detector was simulated through a combination of the deposited energy and the charge collection efficiency at a specific position. It was found that the shaping time of the amplifier module significantly affects the determination of the (${\mu}{\tau}$) products; the ${\alpha}$ particle method was stabilized with an increase in the shaping time and was less sensitive to this change compared to when the gamma-ray method was used. In the case of the simulated energy spectrum with transport properties evaluated by the ${\alpha}$ particle method, the peak position and tail were slightly different from the measured result, whereas the energy spectrum derived from the low-energy gamma-ray was in good agreement with the experimental results. From these results, it was confirmed that low-energy gamma-rays are more useful when seeking to obtain the transport properties of carriers than ${\alpha}$ particles because the methods that use gamma-rays are less influenced by the surface condition of the CZT detector. Furthermore, the analysis system employed in this study, which was configured by a combination of Monte Carlo simulation and the Hecht model, is expected to be highly applicable to the study of the characteristics of CZT detectors.

Real Scale Experiment for Suspended Solid Transport Analysis and Modeling of Particle Dispersion Model (부유 물질 거동 분석을 위한 실규모 실험 및 입자 분산 모형 적용)

  • Shin, Jaehyun;Park, Inhwan;Seong, Hoje;Rhee, Dong Sop
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.12
    • /
    • pp.236-244
    • /
    • 2020
  • In this research a suspended solid transport experiment was conducted in the river experiment center to find the characteristics and dispersion of the material. Modeling by the particle dispersion model was also executed to reproduce the suspended solid transport. The suspended solid was consisted of a mixture of silica and water using a mixing equipment, which was then introduced into a real-scale flume and measured with the laser-diffraction based particle size analyzer(LISST) to find the concentration of the material. The comparison between the measured suspended solid concentration using drone images and particle size analyzers, with the model showed a good match overall, which proved the applicability of the model. Along with finding the model applicability, the research showed the potential for suspended solid estimation in high flow situations with high rainfall.