• Title/Summary/Keyword: Particle Systems

Search Result 1,101, Processing Time 0.024 seconds

Multi-Object Tracking using the Color-Based Particle Filter in ISpace with Distributed Sensor Network

  • Jin, Tae-Seok;Hashimoto, Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.46-51
    • /
    • 2005
  • Intelligent Space(ISpace) is the space where many intelligent devices, such as computers and sensors, are distributed. According to the cooperation of many intelligent devices, the environment, it is very important that the system knows the location information to offer the useful services. In order to achieve these goals, we present a method for representing, tracking and human following by fusing distributed multiple vision systems in ISpace, with application to pedestrian tracking in a crowd. And the article presents the integration of color distributions into particle filtering. Particle filters provide a robust tracking framework under ambiguity conditions. We propose to track the moving objects by generating hypotheses not in the image plan but on the top-view reconstruction of the scene. Comparative results on real video sequences show the advantage of our method for multi-object tracking. Simulations are carried out to evaluate the proposed performance. Also, the method is applied to the intelligent environment and its performance is verified by the experiments.

Past and State-of-the-Art SLAM Technologies (SLAM 기술의 과거와 현재)

  • Song, Jae-Bok;Hwang, Seo-Yeon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.3
    • /
    • pp.372-379
    • /
    • 2014
  • This paper surveys past and state-of-the-art SLAM technologies. The standard methods for solving the SLAM problem are the Kalman filter, particle filter, graph, and bundle adjustment-based methods. Kalman filters such as EKF (Extended Kalman Filter) and UKF (Unscented Kalman Filter) have provided successful results for estimating the state of nonlinear systems and integrating various sensor information. However, traditional EKF-based methods suffer from the increase of computation burden as the number of features increases. To cope with this problem, particle filter-based SLAM approaches such as FastSLAM have been widely used. While particle filter-based methods can deal with a large number of features, the computation time still increases as the map grows. Graph-based SLAM methods have recently received considerable attention, and they can provide successful real-time SLAM results in large urban environments.

Development of Three Phase Optimal Power Flow for Distributed Generation Systems (분산전원계통을 위한 3상 최적조류계산 프로그램 개발)

  • Song, Hwa-Chang;Cho, Sung-Koo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.882-889
    • /
    • 2010
  • This paper presents a method of finding the optimal operating point minimizing a given objective function with 3 phase power flow equations and operational constraints, called 3 phase optimal power flow (3POPF). 3 phase optimal power flow can provide operation and control strategies for the distribution systems with distributed generation assets, which might be frequently in unbalanced conditions assuming that high penetration rate of renewable energy sources in the systems. As the solution technique for 3POPF, this paper adopts a simulation-based method of particle swarm optimization (PSO). In the PSO based 3POPF, a utility function needs to be defined for evaluation of the degree in operational improvement of each particle's current position. To evaluate the utility function, in this paper, NR-based 3 phase power flow algorithm was developed which can deal with looped distributed generation systems. In this paper, illustrative examples with a 5-bus and a modified IEEE 37-bus test systems are given.

Rao-Blackwellized Multiple Model Particle Filter Data Fusion algorithm (Rao-Blackwellized Multiple Model Particle Filter자료융합 알고리즘)

  • Kim, Do-Hyeung
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.4
    • /
    • pp.556-561
    • /
    • 2011
  • It is generally known that particle filters can produce consistent target tracking performance in comparison to the Kalman filter for non-linear and non-Gaussian systems. In this paper, I propose a Rao-Blackwellized multiple model particle filter(RBMMPF) to enhance computational efficiency of the particle filters as well as to reduce sensitivity of modeling. Despite that the Rao-Blackwellized particle filter needs less particles than general particle filter, it has a similar tracking performance with a less computational load. Comparison results for performance is listed for the using single sensor information RBMMPF and using multisensor data fusion RBMMPF.

Geographical Group-based FastSLAM Algorithm for Maintenance of the Diversity of Particles (파티클 다양성 유지를 위한 지역적 그룹 기반 FastSLAM 알고리즘)

  • Jang, June-Young;Ji, Sang-Hoon;Park, Hong Seong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.10
    • /
    • pp.907-914
    • /
    • 2013
  • A FastSLAM is an algorithm for SLAM (Simultaneous Localization and Mapping) using a Rao-Blackwellized particle filter and its performance is known to degenerate over time due to the loss of particle diversity, mainly caused by the particle depletion problem in the resampling phase. In this paper, the GeSPIR (Geographically Stratified Particle Information-based Resampling) technique is proposed to solve the particle depletion problem. The proposed algorithm consists of the following four steps : the first step involves the grouping of particles divided into K regions, the second obtaining the normal weight of each region, the third specifying the protected areas, and the fourth resampling using regional equalization weight. Simulations show that the proposed algorithm obtains lower RMS errors in both robot and feature positions than the conventional FastSLAM algorithm.

Analysis of performance test results of CA-certified air cleaners from 2003 to 2015 (2003년부터 2015년까지 CA 인증 공기청정기의 성능 시험 결과 분석)

  • Kim, Hak-Joon;Hong, Kee-Jung;Woo, Chang Gyu;Han, Bangwoo;Kim, Yong-Jin
    • Particle and aerosol research
    • /
    • v.13 no.1
    • /
    • pp.17-23
    • /
    • 2017
  • In this study, the test results obtained from the performance tests for CA (Korea Association of Cleaning Air) certificated air cleaners which had been commercially available in Korea from 2003 to 2015 were analyzed. Among the test parameters such as flow rate, particle collection efficiency, clean air delivery rate (CADR), ozone emission, odor removal efficiency and noise level, noise level and CADR were correlated with flow rates. Collection and odor removal efficiencies were 20% higher than the limit of the CA certification. The ozone emissions from the air cleaners were negligible because all the air cleaners were equipped with only HEPA filters, not electrostatic precipitation method which produces ozone.

Evaluation of Removal Efficiency of Water Contents using Inertial Impaction Separator (관성 충돌 방식의 액적 분리장치의 수분제거효율 평가)

  • Lee, Sin Young;Hong, Won Seok;Shin, Wanho;Kim, Gyujin;Song, Dong Keun
    • Particle and aerosol research
    • /
    • v.9 no.1
    • /
    • pp.23-29
    • /
    • 2013
  • Inertial impaction type mist eliminators are the most effective instruments to separate mist from the gas. In this work, the effect of the horizontal chevron type mist eliminators is characterized experimentally. Droplet size distribution and evaluation of removal efficiency of the chevron type mist eliminators at different gas flows were investigated using an aerosol particle size analyzer and a portable aerosol spectrometer, respectively. The experimental investigations showed that the mist removal efficiency in these instruments is dependent in the droplet size, and the pressure drop is nil.

Footstep Planning of Biped Robot Using Particle Swarm Optimization (PSO를 이용한 이족보행로봇의 보행 계획)

  • Kim, Seung-Seok;Kim, Yong-Tae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.86-90
    • /
    • 2007
  • 본 논문에서는 Particle Swarm Optimization(PSO) 기법을 이용한 이족보행로봇의 보행 계획방법을 제안한다. 이족보행로봇의 보행 프리미티브를 기반으로 PSO의 학습 및 군집 특성을 이용하여 장애물이 있는 작업공간에서 보행 계획을 수행하였다. 먼저 PSO의 탐색알고리즘을 사용하여 장애물을 회피하는 실행 가능한 보행 프리미티브들의 순서를 찾아내고 탐색된 순서를 바탕으로 경로 최적화 알고리즘을 수행하는 보행 계획방법을 제안하였다. 제안된 PSO 기반 이족보행로봇의 보행 계획방법은 모의실험을 통하여 발걸음 탐색 시간이 줄고 최적화된 보행 경로를 생성하는 것을 검증하였다.

  • PDF

Optimization of the Parameter of Neuro-Fuzzy system using Particle Swarm Optimization (PSO를 이용한 뉴로-퍼지 시스템의 파라미터 최적화)

  • Kim Seung-Seok;Kim Yong-Tae;Kim Ju-Sik;Jeon Byeong-Seok
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.168-171
    • /
    • 2006
  • 본 논문에서는 Particle Swarm Optimization 기법을 이용한 뉴로-퍼지 시스템의 파라미터 동정을 실시한다. PSO의 학습 및 군집 특성을 이용하여 시스템을 학습한다. 유전 알고리즘과 같은 무작위 탐색법을 이용하며 하나의 해 군집에 대해 다수 객체들이 탐색하는 기법을 통하여 최적해 부분의 탐색성능을 높여 전체 모델의 학습성능을 개선하고자 한다. 제안된 기법의 유용성을 시뮬레이션을 통하여 보이고자 한다.

  • PDF

Identification of Dynamic Load Model Parameters Using Particle Swarm Optimization

  • Kim, Young-Gon;Song, Hwa-Chang;Lee, Byong-Jun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.2
    • /
    • pp.128-133
    • /
    • 2010
  • This paper presents a method for estimating the parameters of dynamic models for induction motor dominating loads. Using particle swarm optimization, the method finds the adequate set of parameters that best fit the sampling data from the measurement for a period of time, minimizing the error of the outputs, active and reactive power demands and satisfying the steady-state error criterion.